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Reduced neural activity but improved coding in
rodent higher-order visual cortex during
locomotion
Amelia J. Christensen1✉ & Jonathan W. Pillow 2

Running profoundly alters stimulus-response properties in mouse primary visual cortex (V1),

but its effect in higher-order visual cortex is under-explored. Here we systematically inves-

tigate how visual responses vary with locomotive state across six visual areas and three

cortical layers using a massive dataset from the Allen Brain Institute. Although previous work

has shown running speed to be positively correlated with neural activity in V1, here we show

that the sign of correlations between speed and neural activity varies across extra-striate

cortex, and is even negative in anterior extra-striate cortex. Nevertheless, across all visual

cortices, neural responses can be decoded more accurately during running than during sta-

tionary periods. We show that this effect is not attributable to changes in population activity

structure, and propose that it instead arises from an increase in reliability of single-neuron

responses during locomotion.
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To understand perception, it is important to study how
contextual variables (like behavioral state) affect the
representation of sensory information in neural popula-

tions. Locomotion, a highly ethological behavior in rodents, is
accompanied by pronounced changes in the magnitude and
consistency of neural responses to visual stimuli1–9. For example,
in mouse V1, firing rates increase2, response variability
decreases4,9, noise correlations decrease8, and signal-to-noise
ratio (SNR) increases8 during bouts of running. These observa-
tions have led to a prevalent view in which running acts to
enhance visual representations both in activity level and coding
accuracy1–4,8,10. Here we used the Allen Institute Brain
Observatory11 dataset to quantify how running speed affects
visual responses in six visual cortical regions, evaluating hundreds
to thousands of cells in each region and cortical layer. Our results
highlight a dissociation between changes in activity level and
coding accuracy in different locomotive states and visual regions.

Results
Single neuron running-speed tuning. We evaluated locomotion
tuning in primary visual cortex (V1), lateral visual cortex (VISl)
(‘LM’, or secondary visual cortex), posterior medial visual cortex
(VISpm) (a putative ventral stream region12), anterior lateral
visual cortex (VISal), anterior medial visual cortex (VISam), and

rostral lateral visual cortex (VISrl) (putative dorsal stream
regions12), in cortical layers 2/3, 4, and 5 (Fig. 1a). In all regions,
there existed a diversity of tuning to running speed, including
neurons whose activity (as measured by normalized Ca2+
fluorescence) was positively correlated with running, neurons
whose activity was negatively correlated with running speed, and
neurons with significant but non-monotonic correlation with
running speed (Fig. 1b). A substantial fraction of neurons in all
regions and layers were tuned to running speed, however more
neurons were significantly modulated during running when the
modulation was calculated during stimulus presentation (with all
stimuli in the allen institute dataset – natural movies, natural
images, drifting gratings, static gratings, and locally sparse noise –
included), than when correlation was calculated in the absence of
a visual stimulus (Fig. 1c, d). This was consistent regardless of
whether we considered only natural stimuli (natural movies,
natural images) or artificial stimuli (drifting gratings, static
gratings, locally sparse noise) (Supplemental Fig. 1f, g).

However, surprisingly, we found that in some higher order
visual cortices (especially VISam, VISpm, and VISrl), increased
running speed was often correlated with decreased neural activity,
as indicated by negative average neural correlation coefficients
(Fig. 1e, f). The transition from net positive correlation to
running to net negative correlation to running progressed along
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Fig. 1 Net correlation between neural activity and locomotion varies widely across different extrastriate regions. a Schematic of regions included in
study. b Example non-monotonic, monotonically decreasing, and monotonically increasing tuning curves for running speed, top to bottom. Example cells
are VISp layer 2/3. Error envelope represents standard error margin. c Overall fraction of neurons significantly tuned to running in each region and Cre-line,
calculated during visual stimulus presentation. d Same as (c) except calculated in the absence of visual stimuli. e Fraction of cells displaying different tuning
types to running speed across the visual regions we examined. f Average correlation coefficient between neural activity and running in each visual region,
amongst neurons displaying significant (p < 0.05) monotonic tuning to running. Error bars are 95% confidence interval for the mean estimate calculated via
1000 bootstraps. g Visualization of spatial distribution of overall tuning to running in the visual regions. Cell numbers included in each analysis can be
found in Supplementary Fig. 1. Source data are provided as a Source Data file.
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the anterior-posterior axis (Fig. 1g). This effect was specific to
periods when a stimulus was presented, the sign of the average
correlation coefficient was more varied (across all regions) when
no stimulus was present (Fig. 1f). These trends were consistent
when we separately analyzed data from natural and artificial
visual stimuli (Supplementary Fig. 1f, g). Thus, in general,
anterior extra striate regions had both a higher fraction of cells
tuned to running, and a higher fraction of cells suppressed by
running (Fig. 1f, g). When we repeated these analyses using pupil
diameter as an indicator of the animals behavioral state instead of
locomotion speed, the results were almost identical (Supplemen-
tary Fig. 1d), consistent with the interpretation that both
locomotion and pupil diameter are indicators of a generally
aroused state which underlies the neural changes we observe. This
observed net negative correlation of running with neural activity
level in anterior extra striate regions is reminiscent of the
running/activity correlation previously observed in somatosen-
sory and auditory cortices, and differs from that previously
observed in V1. However, all regions we evaluated (including V1)
had many cells tuned both positively and negatively to running,
leading us to question the relationship between visual encoding
accuracy and the overall sign of population-locomotion
correlation.

Population decoding. To investigate this question, we sought to
test whether, despite the diversity of running evoked changes in

magnitude of neural activity, visual coding fidelity (as assessed by
decoding performance) was improved in all visual regions8,13.

To assess decoding performance, we trained a linear classifier
(multinomial logistic regression) to decode which of 8 different
drifting gratings were presented to a mouse. Decoding perfor-
mance was significantly higher for responses during running than
for responses during stationary periods (Fig. 2a). This trend was
also present in each individual visual region (Fig. 2b), despite the
fact that in many of these regions, net neural activity decreased
during periods of locomotion. Indeed, when we excluded from all
datasets any neurons whose activity increased during locomotion,
we observed the same improvement of decoding performance
(Fig. 2c, d). We also performed a control analysis to try to
separate the influence of arousal and locomotion, to determine
whether a large variability in behavioral states underlying the
“stationary” condition might contribute to poor decoding
performance (Supplemental Fig. 6). We did not find an effect
of pupil diameter on decoding during the stationary periods.
However, it is possible that this is due to the relatively small
number of trials included in this analysis, due to constraints of
balancing conditions.

To investigate what changes in neural response statistics (other
than overall magnitude of response) led to this improvement in
classifier performance, we analyzed the noise correlations of
population responses. Previous work has shown that noise
correlations in V1 decrease during running7,8, and this has been
proposed to be a primary reason for improved decoding accuracy
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Fig. 2 Decoding performance (multinomial logistic regression) is improved during running relative to stationary periods, independent of net neural
tuning or noise correlations. a Average fraction of correctly classified visual stimuli during running and stationary periods (average over ten 50:50 train/
test splits). Each data point is an individual experiment. Colors indicate brain region recorded. b Data from (a) displayed separated into visual regions in
dataset, only including experiments in which the difference between running and stationary periods was significant (in either direction). Each dot is an
individual experiment. c, d Same as (a), (b) but excluding neurons that increase their activity during running. e, f Same as a. but trial-shuffled to remove
noise correlations. g, h Same as a. but excluding neurons that increase their activity during running and trial-shuffled to remove noise correlations. Different
decoders, all layers, and differential effect of pupil diameter and running speed are presented in Supplemental Figs. 4–7. Cell and dataset numbers for each
region and condition can be found in Supplementary Table 1. All error bars are 95% confidence intervals of mean estimate calculated via 1000 bootstraps.
Statistics are calculated via Wilcoxon Sign Rank test, two tailed. Source data are provided as a Source Data file.
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Fig. 3 Increased reliability accounts for decoding results. a Population tuning curves separately plotted for neurons that have a negative correlation
coefficient with running speed, and those that have a positive correlation tuning curve. Neural responses were z-scored across all stimuli before being split
into running and stationary groups, then sorting according to their average response to each stimulus. Dff z-score is averaged across all cells. 2577 cells
positively correlated, and 3209 negatively correlated cells were included in this analysis, error bars are 95% confidence on the mean estimate determined
by 1000 bootstraps. b histogram comparing the average change in neural activity for the preferred stimuli, vs. all other stimuli. Percent difference is
averaged across all cells in a particular imaging dataset before plotting. 39 – mouse datasets were included in this analysis, only cells significantly tuned to
drifting gratings and running speed were included in this analysis, datasets without enough running or stationary periods to calculate tuning were excluded
(see methods). A positive value corresponds to cases where the average response is higher during running, and a negative value corresponds to cases
where the average response is lower during running. c Schematic of reliability calculation. d Scatter plots of variance of average responses and variance of
individual responses—the numerator and denominator of the reliability metric, respectively. Values were averaged over all neurons in each mouse- dataset,
a total of 61 datasets were included in this analysis. e Reliability as defined in panel “d”, averaged across all neurons per mouse-dataset, in running vs.
stationary periods. A total of 61 mouse-datasets were included in this analysis. f Correlation between decoding performance and average percent change in
reliability in each experiment. Error envelope is defined by 1000 bootstrap resamples and refitting of the linear regression line. g Same as 2a, b except
decoders trained excluding top 25% of cells with the most changed reliability (h). Same as (g) except decoders trained excluding top 50% of cells with the
most changed reliability. Cell and mouse-dataset numbers as in Fig. 2—Supplementary Table 1. P values are Wilcoxon sign rank test against the null
hypothesis of equal distribution medians, two tailed. Error bars on histograms are 95% confidence intervals on the mean estimate determined by 1000
bootstraps. ΔF/F (dff): change in fluorescence over baseline fluorescence. See methods for details. Source data are provided as a Source Data file.
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during running compared to during stationary periods13.
Additionally, increased behavioral discrimination performance
in mice during cholinergic modulation (which is typically present
during locomotion) has been attributed to de-correlated neural
activity patterns3. To determine whether decreased noise
correlations during running epochs were responsible for the
increases in classifier performance we observed, we compared
decoder performance on data that were trial shuffled. Surpris-
ingly, we found that—although trial shuffling slightly reduced the
size of the improvement in decoding accuracy during running—a
robust difference in decoder performance between running and
stationary periods persisted for shuffled data (Fig. 2e, f). We were
nevertheless curious whether a combination of increased response
levels during running and reduced noise correlations could
account for the difference in decoding performance, as has been
previously suggested13. We therefore repeated our decoding
analysis on a dataset that was trial shuffled after removing all
neurons excited by running; surprisingly, the difference in
decoding between running and stationary periods was still
present (Fig. 2g, h). These trends were consistent across multiple
choices of classifier (Supplementary Figs. 4 and 5).

Neural encoding reliability. Motivated by these findings, we
hypothesized that individual neurons might encode the stimulus
identity more reliably when the animal was running, even if their
overall activity did not increase. To assess the relationship
between stimulus encoding and running-speed correlation, we
restricted our correlation analysis to the same drifting gratings
stimulus used for our decoding analysis. We first examined the
distribution of running speed – activity correlations across the
visual regions, similarly to our analysis from Fig. 1. We observed
that, although in general drifting gratings responsive neurons
tend to be more positively correlated with running than drifting
gratings non-responsive neurons (Supplemental Fig. 8a, b), neu-
rons in all regions showed a diversity of running speed – activity
correlations. When we examined population tuning curves we
found that in cells whose overall activity during the drifting
gratings stimulus set increased when running, the primary effect
on the population tuning curve was to increase the response to
the most preferred stimuli (Fig. 3a, left),. In contrast, in cells
whose overall activity during the drifting gratings stimulus set
decreased when running, the primary effect on the population
tuning curve was a decrease in response to the least preferred
stimuli (Fig. 3a, right). Thus, in tuned cells, even a net neural
activity decrease during locomotion might increase the signal to
noise ratio, and thus the decodability of visual stimuli (Fig. 3b). In
these data a selective reduction in background activity (aka
activity during the non-preferred stimuli) is the primary cause of
the overall activity reduction we previously observed, when
marginalizing across all stimuli (Fig. 3d).

Indeed, we found that even neurons whose activity did not
increase during running showed increased ‘reliability’, defined as
the variance of each neuron’s average response to each image
divided by the total variance of each neuron’s response10, and this
improved reliability was correlated with the increased decoding
performance (Fig. 3e, f). We excluded the top 25% and top 50% of
neurons whose reliability changed in each separate experimental
session, and retrained and tested decoders. We found that,
although the decoders still performed similarly to decoders
trained with all neurons, with 25% of neurons excluded the
difference between running and stationary decoding accuracy was
greatly diminished, and it was abolished when the top 50% of
neurons with changed reliability were excluded (Fig. 3g, h). Thus,
unlike previous reports based on data from V1, we found
increased decoding accuracy correlated with increased fidelity in

single neuron responses and was not explainable entirely by
decreased noise correlations or increased overall activity levels.

Leaky integrate and fire models. Lastly, we sought to investigate
possible physiological mechanisms underlying the increased
reliability of single-neuron responses during running. It has been
previously reported that during periods of locomotion, back-
ground membrane voltage fluctuations of neurons in V1
decrease8,9. We performed simulations of leaky integrate and fire
neurons (LIF) to determine whether this decreased membrane
voltage fluctuation could explain the increased reliability in
neurons whose activity either decreased or did not change during
running. We added Gaussian noise to the membrane voltage of
LIF neurons, while driving them with input current corre-
sponding to randomized presentation of 15 different input cur-
rent levels, corresponding to Gaussian shaped tuning to the 15
different simulated stimuli (Fig. 4a). As expected, we observed
that increasing the peak input current increased the neuron’s
firing rate and its reliability, and that adding noise to the mem-
brane potential also increased the neuron’s firing rate, but
reduced its reliability (Fig. 4b, Supplemental Fig. 9c). We chose
two noise levels reflective of levels measured in vivo (19 (mV)2

and 36 (mV)2) for running and stationary epochs respectively4,
and simulated responses across a range of peak input current
amplitudes (Fig. 4c). We found a sharp increase in reliability of
these simulated responses between noise variances of 36 (mV)2

and 19 (mV)2, implying that neurons had significant room to
decrease or maintain their activity levels while still improving
reliability (Fig. 4d). In combination with the observation that
lowered background noise itself can lead to lower firing rates
without changes the mean synaptic drive to a neuron, our
simulations explain how a neuron’s activity level could easily be
reduced by ~50% during locomotion, while its response reliability
nonetheless increased. There are many important features of
actual cortical circuits (such as recurrence between visual areas,
and even the fact that higher order visual areas receive input from
lower order visual regions, which may already have running speed
modulated activity), which are not included in these simulations.
These simulations are intended to show that all else being equal,
simply the changing background noise can cause all of the effects
we observe in our data (e.g. would, in the absence of other factors,
both decrease firing rates and increase response reliability). Fur-
ther experimentation and physiological measurements will be
required to establish whether a reduction in membrane voltage
fluctuations during locomotion explains the enhancement in
decoding performance we observed, however our simulations are
consistent with this hypothesis.

Discussion
A normative theory that accounts for the enhancement in both
activity and coding accuracy of visual neurons during locomotion
proposes that running triggers a visual selective-attention
mechanism, as vision is the most navigationally-important
sense for rodents14. This hypothesis is supported by the obser-
vation that correlation to running is largely negative in both
motor and somatosensory cortices15. However, we observed a
striking diversity in the type of neural activity changes during
locomotion across different visual cortical regions. Surprisingly,
neurons in some higher order visual areas were more likely to be
negatively correlated with running than positively correlated with
running, in contrast to previous results showing response
enhancement V1. This negative correlation is not easily recon-
cilable with theories that explain the running speed modulation in
V1 simply by enhanced ‘attention’ to vision during running.
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However, despite the trend towards running-induced sup-
pression in higher order visual cortices, running still enhanced
the representations of visual stimuli, as measured by decoding
accuracy. This effect was not attributable to noise correlations or
increased magnitude of neural activity, but instead was explain-
able by increased reliability of individual neural responses.

Physiologically, both the decrease in activity we observed, and
the increase in reliability could result from lower background
membrane voltage fluctuations during locomotion8. Considering
that activity in somatosensory and motor cortex are also nega-
tively correlated with running15, it is possible that this negative
correlation we observe is a more generic cortical phenomenon.
However, it is also possible that the running induced negative
correlation to running seen in somatosensory cortex and motor
cortex15 are mechanistically distinct from what we see in some
higher order visual cortices, as these regions are likely to be
spuriously activated by any running related signals, such as
interoception, whisking, etc. It’s possible the negative correlation
to running in motor and somatosensory signals instead acts to
dampen these abundant signals.

Alternately, given that the correlation with running speed
seems to be dependent on how strongly a neuron is driven by a
particular stimulus, it’s possible that as a community we are just
better at selecting stimuli that specifically drive V1 neurons than
almost any other region, and thus V1 is the region in which
stimulus-gain effects are the most obvious.

Similarly, our results could be a downstream consequence of a
difference in distribution of preferred stimuli type across the dif-
ference visual regions—as previous authors have noticed that
neurons with particular tuning preferences (namely those tuned to

high spatial frequencies16) are more likely to be positively corre-
lated with running. This effect has been described as a potential
rodent analog of spatial attention. However this is unlikely to
completely explain our results–the published data on spatial fre-
quency selectivity in mouse higher order visual cortex12 does not
correlate with the distribution of running speed selectivity we have
observed. For example, in Marshel et al. AL has the lowest spatial
selectivity, and PM has the highest spatial selectivity, whereas in
our data AL and PM have relatively similar overall distributions of
neural correlations with locomotion speed.

An important caveat to our work is that although we have only
measured and analyzed Ca2+ fluorescence as a proxy for neural
activity, many previous theoretical studies on neural tuning, neural
response gain, and even our own work on neural reliability through
LIF simulations relied on analyzing neural firing rates. Ca2+ activity
is a fundamentally different measure of neural activity and in many
cases only bears a noisy, non-linear relationship to neural firing rates.
In particular Ca2+ sensors display a non-linear activity/fluorescence
relationship, with saturation both at high and low firing rates, which
could potentially impact analysis of neural response reliability, and
overall correlation to running. In particular, small changes in neural
activity when firing rates are low can be difficult to detect with
GCaMP. This could limit our ability to detect decreases in sponta-
neous activity and decreases in activity evoked in response to pre-
sentation of non-preferred stimuli. Further work should be done to
verify these findings with electrophysiology.

In either case, these results highlight previously unknown
differences in running speed modulation in primary visual cortex
and posterior and anterior higher order visual cortices and
highlight important questions for future work.
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Methods
Data collection. We analyzed data from the publicly available Allen Institute for
Brain Science Brain Observatory data set. Their full data collection methodology
can be found in the white paper11. In brief, transgenic mice expressing GCaMP6f in
laminar-specific subsets of cortical pyramidal neurons underwent intrinsic signal
imaging to map their visual cortical regions before cranial windows were implanted
above the desired visual region. Mice were habituated to head fixation before
imaging sessions in which they were shown either a mean luminance blank screen,
natural scenes, natural movies, locally sparse noise, or drifting or static gratings.
These data were collected over four different experimental session per mouse, each
of which lasted ~1 h. Stimulus types were interleaved throughout each session, for
example in session A mice are presented with 10 min of drifting gratings, followed
by 10 min of a natural movie, followed by 5 min of a different natural movie,
followed by another 10 min of drifting gratings, followed by 5 minutes of sponta-
neous activity (mean luminance blank screen), etc. The full details of each stimulus
design, and the order in which they were presented is described in the Stimulus Set
and Response analysis white paper in the Allen Institute documentation (http://
help.brain-map.org/display/observatory/Documentation?preview=/10616846/
10813485/VisualCoding_VisualStimuli.pdf).

Neuropil corrected normalized fluorescence change (ΔF/F) traces for each cell
were extracted using automated, structural ROI based-methods (See Allen Institute
white paper for details). ΔF/F was calculated using a rolling-window baseline
method. The baseline was calculated as a windowed mean of the windowed mode.
The mode kernel width is 5400 frames (3 min), and the mean kernel width is 3000
frames (1.667 min). The raw, neuropil-corrected fluorescence was then baseline-
subtracted and baseline-normalized. Eye movements, pupil area and locomotion
speed were recorded for some experiments, here we only analyzed experiments for
which pupil area was available. We analyzed data from the Cux2-Cre-ERT2 (layer
2/3), rbp4-Cre (layer 5), and Rorb-Ires-Cre (layer 4) mice, as data from these
transgenic lines were available for all regions in the data set.

Running speed tuning. For our analyses of running speed tuning, we selected mice
who ran for at least one quarter of the stimulus presentation period (to ensure
enough data-points to accurately calculate tuning). We also excluded mice whose
maximum running speed was less than 15 cm per second, to ensure enough of a
range of running speeds were present to accurately assess correlations. We esti-
mated running-speed tuning curves by first binning data into 20 equal-sized bins
(i.e., 20 quantiles) of running speed, ranging from zero to the maximum speed
attained by each mouse, and taking the mean neural activity in each bin, effectively
creating a non-parametric ‘tuning curve’ to running. To determine whether a
neuron’s activity was significantly modulated by running, we compared the neu-
ron’s running-speed tuning curve to a running-speed tuning curve computed from
randomly permuted data using Levene’s t test of variance; we considered a neuron
tuned if its non-shuffled tuning curve had significantly more variance than it’s
shuffled tuning curve5. We calculated Spearman’s rho on the binned data, to
determine whether each neuron was monotonically tuned to running. We con-
sidered neuron with a statistically significantly negative rho to be negatively cor-
related with running, and a statistically significantly positive rho to be positively
correlated with running. Neurons whose activity were not statistically significant
monotonically correlated to running speed, but that had passed levene’s t test of
variance were considered “non-monotonically” tuned to running. We used an
alpha-level of p= 0.05 for our estimate of significant tuning. We calculated this
tuning both separately for natural (natural scenes and natural movies), artificial
(drifting gratings, static gratings, and noise stimuli), and spontaneous activity. We
found that tuning was similar across natural and artificial stimulus conditions, and
therefore grouped them together in the main text (but see Supplemental Fig. 1).
Note, during the presentation of some stimuli there were blank periods in between
subsequent stimuli presentations, e.g. between presentation of different orienta-
tions of drifting gratings. These data were discarded for this analysis, and were not
considered as part of either the spontaneous or stimulus datasets. When we refer to
“spontaneous” periods, we are referring to the 10 min blocks of mean luminance
blank screens during each experimental session (a total of 30 minutes of data for
each mouse).

Gaussian tuning model. As in Saleem et al.5 three different Gaussian models were
fit to the neural tuning curves. The models were differentiated by constraints on the
locations of the center parameter. The first model was a monotonically increasing
model where we constrained the center of the Gaussian to fall higher than the
highest running speed, the second model was a monotonically decreasing model
where we constrained the center of the Gaussian to fall lower than the lowest
running speed, and the third model was one where the center was allowed to fall
within the highest and lowest values. We determined which model fit the data best
10 repetitions of a cross validation procedure where we split the data into 75%
training, 25% test set before creating the tuning curves that we fit the models to.

Drifting gratings analysis. Drifting grating selectivity indices were obtained via
the AllenSDK. Again, the full details of the calculations performed by the Allen
institute can be found here: http://help.brain-map.org/display/observatory/
Documentation?preview=/10616846/10813485/VisualCoding_VisualStimuli.pdf.

Neurons were classified as significantly responsive to drifting gratings if a one-way
anova between all responses obtained during all the different stimulus conditions
(different grating direction and temporal frequencies) was less than 0.05. Drifting
grating selectivity index was defined as (Rpreferred − Rnull) / (Rpreferred + Rnull) where
Rpreferred is the average neural response to the stimulus that neuron responded the
most to, and Rnull is the average neural response to the stimulus orthogonal to the
preferred stimulus.

Decoding analysis. We performed all decoding analyses on the Drifting Gratings
dataset from the Allen Institute Brain Observatory. Details of this dataset can be
found in their white paper11, but briefly: each mouse was presented with 75
repetitions of 8 drifting gratings of different directions, for 2 s per presentation,
with a 1 s blank period in between stimuli. Each grating presentation had a spatial
frequency of 0.04 cpd and a temporal frequency randomly selected from a set of 5
different temporal frequencies. We performed decoding of grating direction while
ignoring temporal frequency. For the purposes of the decoding analysis, we
excluded individual experiments in which fewer than 10 neurons were recorded—
this exclusion criteria mainly applied to lower levels of VISrl in the analyses when
considering all neurons except those with positive tuning to running. Note that
decoding analyses included data from additional mice that were excluded from the
speed tuning curve analyses (due to insufficient time spent running). Decoding
analyses that excluded neurons with positive tuning to running, however, only
included data from the subset of mice whose tuning curves had been well
characterized.

To perform decoding, we extracted a vector of neural population activity for
each trial by normalized averaging fluorescence (ΔF/F) over a 2 s window that was
offset by 330 ms (10 imaging frames) from the beginning of stimulus presentation.
This time window was chosen by selecting the window that maximized the R2

prediction performance of held out trials from the PSTH. To compare decoding
during running vs. during stationary periods, we split the data into “running trials”
(trials with average velocity > 3 cm/s, but whose minimum velocity did not drop
below 0.5 cm/s) and “stationary trials” (trials with average speed < 0.5 cm/s but
whose maximum speed did not exceed 3 cm/s). We randomly sub-sampled the data
to ensure equal number of trials per visual stimulus class in both running and non-
running subsets. For the data presented in the main paper, we performed decoding
of neural responses using an 8-way multinomial logistic regression (MLR)
classifier, as implemented in the scikit-learn17 python package. Classifier weights
were learned via the LBFGS algorithm, and no regularization was applied. Classifier
performance was assessed via a cross-validation procedure: fraction of correctly
labeled stimuli on a test set comprising 50% of the data was averaged over 10
random (class balanced) train-test splits. For shuffling analyses, we randomly
permuted each neuron’s responses across trials (within the same class) so that
population response vectors contained non-simultaneous responses, breaking trial
to trial correlations between simultaneously recorded neurons. In the figures,
decoders were both trained and tested on shuffled data, although in separate
analysis we either only tested or only trained on the shuffled data, without
significantly different results. The main results are consistent across different
decoder types, with results obtained with Gaussian Naïve Bayes and Multi-Class
Support Vector machines (evaluated in a one-vs-rest scheme) are presented in the
Supplemental Materials.

We assessed each cell’s reliability, defined as the variance of the average ΔF/F
response across different stimuli divided by the total variance across responses to
all stimuli10. Thus, if a cell has high variance of response across all stimuli (e.g. a
greater dynamic range in its responses to different stimuli types), with low trial to
trial noise, it is considered to be extremely reliable – thus, a single measurement of
that neuron’s response contains a large amount of information about stimulus
identity.

Leaky integrate and fire simulations. To examine the possible effects of mem-
brane voltage fluctuation on response reliability, we performed simulations of leaky
integrate and fire neurons, using Euler’s method. Membrane voltage was initialized
to 70 mV, and then integrated over time according to the following differential
equation:

Cm
dV
dt

� �
þ gl V � El

� � ¼ Iapp ð1Þ

If V>Vthresh; V ¼ El ð2Þ

Cm : membrane capacitance

gl : leak conductance

El : resting membrane potential

Iapp : applied current

Vthresh : Threshold voltage
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The following parameters were used Vthresh: −49 mV, Vinit: −70 mV,
integration time step = 0.05 ms, Cm = 490 pF, gl = 16 pS, El = −65 mV. For
Supplementary Fig. 7, we did an additional simulation with resting membrane
potential (El) of 68 mV and 70 mV for running and stationary periods respectively,
to match the resting membrane potentials measured in vivo4,9.

We created a Gaussian shaped tuning curve across 15 different stimuli to define
the input current generated by each stimulus (as illustrated in Fig. 4). We simulated
different levels of membrane voltage fluctuation by adding independent Gaussian
noise to membrane voltage at each time step. Noise variance levels of 19 mV2 and
36 mV2 were empirically determined to match values recorded in vivo for running
and stationary animals. We simulated presenting 300 ms trials of each stimulus 10
times in a randomized order, and calculated reliability in the same fashion as
described above.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data is freely available through the Allen Institute Brain Observatory11. Source data and
minimal plotting code to recreate the figures are included with this paper.

Code availability
Code to reproduce all figures is freely available on the authors github repository
github.com/achristensen56/AIBSmouselocomotion.
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