Inferring learning rules from animal decision-making

Zoe C. Ashwood1,2,* Nicholas A. Roy1,* Ji Hyun Bak3,†

The International Brain Laboratory Jonathan W. Pillow1,4

1Princeton Neuroscience Institute, Princeton University
2Dept. of Computer Science, Princeton University
3Redwood Center for Theoretical Neuroscience, UC Berkeley
4Dept. of Psychology, Princeton University
{zashwood, nroy, pillow}@princeton.edu,
jihyun.bak@ucsf.edu, info@internationalbrainlab.org

Abstract

How do animals learn? This remains an elusive question in neuroscience. Whereas reinforcement learning often focuses on the design of algorithms that enable artificial agents to efficiently learn new tasks, here we develop a modeling framework to directly infer the empirical learning rules that animals use to acquire new behaviors. Our method efficiently infers the trial-to-trial changes in an animal’s policy, and decomposes those changes into a learning component and a noise component. Specifically, this allows us to: (i) compare different learning rules and objective functions that an animal may be using to update its policy; (ii) estimate distinct learning rates for different parameters of an animal’s policy; (iii) identify variations in learning across cohorts of animals; and (iv) uncover trial-to-trial changes that are not captured by normative learning rules. After validating our framework on simulated choice data, we applied our model to data from rats and mice learning perceptual decision-making tasks. We found that certain learning rules were far more capable of explaining trial-to-trial changes in an animal’s policy. Whereas the average contribution of the conventional REINFORCE learning rule to the policy update for mice learning the International Brain Laboratory’s task was just 30%, we found that adding baseline parameters allowed the learning rule to explain 92% of the animals’ policy updates under our model. Intriguingly, the best-fitting learning rates and baseline values indicate that an animal’s policy update, at each trial, does not occur in the direction that maximizes expected reward. Understanding how an animal transitions from chance-level to high-accuracy performance when learning a new task not only provides neuroscientists with insight into their animals, but also provides concrete examples of biological learning algorithms to the machine learning community.

1 Introduction

Learning is a fundamental aspect of animal behavior, as it enables flexible adaptation to the time-varying reward structure of an environment. The ability of animals to learn new tasks also happens to be a fundamental component of neuroscience research: many experiments require training animals to perform a decision-making task designed to test specific theories of brain function. A deeper

*These authors contributed equally to this work
†Current address: University of California, San Francisco

understanding of how an animal learns—specifically, how it updates its policy in order to progress from chance-level to high-accuracy task performance—would provide both theoretical and practical benefits for understanding animal behavior, and would allow us to compare biological learning with the learning behavior of artificial agents [32].

Reinforcement learning typically focuses on the design of normative learning algorithms [7, 18, 30], which describe the optimal action selection policy for a given objective function [18]. These models have been successful in endowing artificial agents with the ability to efficiently learn complex tasks [16, 28, 33]; in the context of animal and human behavior, these models have successfully described and predicted various aspects of observed behavior [7, 18, 22, 29].

However, one of the greatest challenges for normative modeling lies in inferring an animal’s internal model from behavior alone. Specifically, it is difficult to characterize an animal’s objective function because animals often behave in ways that would not appear to increase their expected reward [2, 6, 12]. Modeling the intricacies of such behaviors often requires incorporating extensions into traditional reinforcement learning models, necessarily trading off the reward-maximizing properties of these models in order to better describe the data [9, 12, 17, 36]. Just as the rise of large public datasets enabled a revolution in machine learning [8, 13], the advent of high-throughput animal training opens the door to an exciting alternative approach to modeling learning. Leveraging new behavioral datasets containing millions of choices [11, 20], it may now be possible to infer directly from data the rules that govern animal learning.

In this paper, we present a flexible framework for inferring learning rules directly from an animal’s decision-making behavior. Our method efficiently tracks the dynamic trial-to-trial changes in an animal’s policy parameters over the course of training, and provides an interpretable decomposition of those changes into a learning component and an additive noise component (Fig. 1). Our method is formulated as a general framework that can model a variety of conventional learning rules, and offers a new way to compare different models of learning. We expect this approach to advance our understanding of learning from both computational and biological perspectives, offering valuable insights to neuroscientists and machine learning researchers alike.

2 Models and Methods

2.1 Model of decision-making

We present our model in the context of a generic two-alternative forced choice (2AFC) task, a common paradigm for studying decision-making behavior. On each trial, an animal is presented with a stimulus s_t, and makes a choice $y_t \in \{0, 1\}$, referred to generally as a “leftward” or “rightward”
choice. An animal receives a reward \((r_t = 1)\) if its response \(y_t\) is correct, but receives no reward \((r_t = 0)\) otherwise. The correct answer \(\hat{y}_t\) for a given stimulus \(s_t\) depends on the rules of the specific task.

We assume that an animal’s behavior on a trial \(t\) is governed by an internal model, parametrized by a set of weights \(w_t\). These weights describe how an animal’s choice depends on the task stimulus, \(s_t\), as well as any task-irrelevant aspects, such as a stimulus-independent bias toward one choice over the other. Specifically, we construct an input carrier vector \(x_t = [1, s_t]\) that couples linearly with the weight vector \(w_t\), such that the probability of the animal going “rightward” on trial \(t\) is

\[
p(y_t = \text{rightward} \mid x_t, w_t) \equiv p_R(x_t, w_t) = \frac{\exp(x_t \cdot w_t)}{1 + \exp(x_t \cdot w_t)}. \tag{1}
\]

The weight component that interacts with the constant “1” in the input vector captures the bias to choose to go “rightward”, while the weights that couple with the task stimuli \(s_t\) represent the animal’s stimulus sensitivities. This model is generally applicable to a wide array of tasks and can be readily extended to include other types of task-irrelevant covariates, such as the history dependence [4, 23, 24]; it is also a natural extension of the classic psychometric curve approach [34] to modeling choice behavior.

2.2 Model of trial-to-trial weight update

Because learning is inherently a time-varying process, we need a way to characterize how the weights evolve over time. We use a state-space representation for the weights \(w \in \mathbb{R}^K[1, 4, 19]\), in which we model the weight update \(\Delta w_t\) as a function of the input \(x_t\), the output \(y_t\), as well as the current state \(w_t\) (Fig. 1a).

We assume that the weight update \(\Delta w_t\) can be decomposed into a deterministic learning component, \(v_t\), and an independent Gaussian innovation noise, \(\eta_t\):

\[
\Delta w_t \equiv (w_{t+1} - w_t) = v_t + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \text{diag} (\sigma_1^2, \ldots, \sigma_K^2)). \tag{2}
\]

The variance of the noise component for the \(k\)-th weight is captured by \(\sigma_k^2\), the volatility hyperparameters. The deterministic component is modeled with a specific learning rule, scaled by a non-negative learning rate; for now we simply use \(v_t\) as a placeholder variable to write

\[
v_t = \text{diag}(\alpha_1, \ldots, \alpha_K) \bar{v}_t, \quad \bar{v}_t = \text{LearningRule}(w_t, \{x_t, y_t\}, r_t). \tag{3}
\]

Element-wise, this is equivalent to \([v_t]_k = \alpha_k[\bar{v}_t]_k\) for the \(k\)-th component of the weight vector. In general, we can treat each learning rate \(\alpha_k\) as a separate hyperparameter in the model.

We note that our method is an extension of our earlier work [23, 24], which presented a purely descriptive model that used only the noise term, \(\eta_t\), to capture trial-to-trial changes in the weight trajectory.

2.3 Learning models

Our framework allows flexible exploration of different learning models, as long as the predicted weight update due to learning, \(v_t\), can be computed from the current weights \(w_t\) and any past experience (such as previous choices \(y_{1:t}\) or rewards \(r_{1:t}\)). In particular, policy-gradient learning [7, 15, 30, 31] fits readily into our framework.

In this paper, we explore the family of REINFORCE [35] learning rules, a set of well-established policy update rules that seek to maximize expected reward by sampling the policy gradient at each trial. In its simplest form, the REINFORCE update for the \(k\)-th weight is given by

\[
[v_t]_k = \alpha_k \cdot r_{a_t, \hat{y}_t} \cdot e_{a_t} \cdot (1 - p_{a_t}) [x_t]_k, \quad e_R = +1, \quad e_L = -1, \tag{4}
\]

where \(a_t\) is the animal’s choice at trial \(t\), \(\hat{y}_t\) is the correct answer for this trial and \(p_{a_t}\) is the probability, as obtained from the policy, that the animal selected action \(a_t\) at trial \(t\) \((p_R(x_t, w_t))\) from Eq. 1 in the case that the animal selected to go rightward, and \((1 - p_R(x_t, w_t))\) in the case that the animal went to the left at trial \(t\). The reward is \(r_{a_t, \hat{y}_t} = 1\) when \(a = \hat{y}_t\) (correct choice), and 0 otherwise (incorrect). The sign \(e_{a_t}\) is simply a mathematical consequence of how we modeled the choice probability (Eq. 1).

In what follows, we will refer to the model defined by the combination of Eq. 1, Eq. 2 and the
We confirm that our method accurately recovers the weight trajectories (Fig. 1c), as well as the values of the underlying hyperparameters (Fig. 2c). In particular, it is able to separately infer different values.

2.4 Inference of the weight trajectory

We use hierarchical Bayesian inference to estimate both the time-varying weight trajectory and the best set of hyperparameters from choice data. The inference procedure consists of two loops, for (i) weight estimate at fixed hyperparameters, and (ii) hyperparameter optimization.

For the inner loop, the goal is to determine the combined weight trajectory that maximizes the posterior distribution, at fixed hyperparameters \(\phi = \{\sigma_1, \ldots, \sigma_K, \alpha_1, \ldots, \alpha_K, \beta_1, \ldots, \beta_K\} \). With \(T \) trials in the dataset, and \(K \) weights, we optimize the entire weight trajectory at once by representing it as a \(KT \)-dimensional vector \(w \). The posterior is constructed from the likelihood function and the prior distribution. The model of choice probability (Eq. 1) specifies the trial-specific likelihood function \(p(y_t|\mathbf{x}_t, \mathbf{w}_t) \). The model of trial-to-trial weight updates (Eqs. 2-3) corresponds to a Gaussian prior on the weight trajectory, \(\mathbf{w} \sim \mathcal{N}(\mathbf{u}, C) \), with mean \(\mathbf{u} = D^{-1} \mathbf{v} \) and covariance \(C^{-1} = D^T \Sigma^{-1} D \); here \(D \) is the difference matrix constructed as \(K \) copies of a \(T \times T \) matrix stacked block-diagonally, where each \(T \times T \) block has +1 along the main diagonal and -1 along the lower off-diagonal; \(\Sigma \) is a diagonal matrix of \(\sigma \)'s (see SM for full details) [4]. Note that the prior mean \(\mathbf{v} \) depends on the hyperparameters \(\{\alpha_k\} \) and \(\{\beta_k\} \), and the covariance matrix \(C \) depends on \(\{\sigma_k\} \).

Given data \(\mathcal{D} = \{\mathbf{x}_t, y_t\}_{t=1,...,T} \), the log-posterior for \(w \) is

\[
\log p(w|\mathcal{D}; \phi) = \frac{1}{2} \left(\log |C|^{-1} - (w - u)^T C^{-1} (w - u) \right) + \sum_{t=1}^{T} \log p(y_t|\mathbf{x}_t, \mathbf{w}_t) + \text{const.} \quad (6)
\]

For the outer loop, we perform numerical optimization so as to obtain the set of hyperparameters, \(\phi = \{\{\sigma_k\}, \{\alpha_k\}, \{\beta_k\}\} \), that maximize the approximate marginal likelihood, or evidence, defined as

\[
p(D|\phi) = \int d\mathbf{w} p(D|\mathbf{w}) p(\mathbf{w}|\phi) = p(D|\mathbf{w}) p(\mathbf{w}|\phi) / p(D; \phi) \approx \frac{p(D|\mathbf{w}) p(\mathbf{w}|\phi)}{\mathcal{N}(\mathbf{w}|\mathbf{w}_{\text{MAP}}, -H^{-1})} \quad [5, 25].
\]

We use Laplace approximation to approximate the posterior distribution over the weights, \(p(\mathbf{w}|D; \phi) \approx \mathcal{N}(\mathbf{w}|\mathbf{w}_{\text{MAP}}, -H^{-1}) \), where \(H \) is the Hessian at the maximum a posteriori estimate of the weights, \(\mathbf{w}_{\text{MAP}} \).

We usually fit multiple models with different hyperparameter initializations to locate the global optimum of model evidence. See SM for full details of the inference procedure.

3 Results

Although our method can be applied to a wide variety of tasks, for clarity, we will mostly focus on a specific 2AFC task: the International Brain Laboratory’s (IBL) decision-making task based on visual detection [11]. See Fig. 2a and the caption for a more in-depth description of the task.

3.1 We can infer learning rates from simulated data

We first demonstrate our method with simulated data that resembles a mouse’s choices as it learns the IBL task. We generated two time-varying weight trajectories for the mouse’s bias and sensitivity (Fig. 2b), according to the trial-to-trial weight update model (Eq. 2) with the standard REINFORCE learning rule (Eq. 4). Four hyperparameters were used to generate the weight trajectories, with a learning rate \(\alpha \) and a noise strength \(\sigma \) for each weight (Fig. 2c); the values were chosen to emulate the properties of the real data. We used the probabilistic decision-making model (Eq. 1) to generate a stimulus-response pair for each trial based on the weights, and only used this simulated behavioral data to infer the weight trajectories and the hyperparameters.

We confirm that our method accurately recovers the weight trajectories (Fig. 2b), as well as the values of the underlying hyperparameters (Fig. 2c). In particular, it is able to separately infer different values.
for the learning rates (α_1 and α_2) for the two different weights. In the SM, we show additional recovery analyses, including the recovery of RF$_\beta$ weights and hyperparameters from simulated data.

3.2 We can decompose weight updates into learning and noise

Moreover, our method can explicitly decompose each trial-to-trial weight change Δw_t into a learning component v_t and a noise component η_t (Eq. 2). Fig. 2d demonstrates that our method has accurately de-mixed the components separately, as shown by the narrow shaded gap between the true and retrieved curves. The decomposition provides a useful tool for interpreting the behavioral data. In particular, we can quantify how much of the trial-to-trial weight update is along the dimension of learning: we calculate the projected square magnitude of the update $|\Delta w_{\hat{v}_t}|^2 = (\Delta w_t \cdot \hat{v}_t)^2 / |\hat{v}_t|^2$ that is parallel to \hat{v}_t, and its fraction out of the net weight update $|\Delta w_t|^2$. In the simulated data (Fig. 2), for example, the average contribution from the learning dimension is $\langle |\Delta w_{\hat{v}_t}|^2 / |\Delta w_t|^2 \rangle_{\text{all trials}} = 0.53$. This is a better approach than a naive comparison between the inferred values of the learning rate α and the noise strength σ, which can be difficult to interpret.

In the SM, we explore the effect of model mismatch on both hyperparameter and weight decomposition recovery. There, we show that a successful decomposition of learning and noise components depends crucially on the correct choice of the learning model. In this case, we know that the learning model for the inference is correct, because it assumes the same model (REINFORCE) as the one used for generating the “true” weight trajectory. In the case of actual data, the true learning model is not known; however, as we also show in the SM, the Akaike Information Criterion, can help us successfully identify the underlying learning model (see SM).

3.3 Animals learn different weights at different rates

Now we apply our method to model the choice behavior of 13 mice (78,000 trials; 6,000 trials per mouse) learning the IBL task as they transition from chance-level to greater than 70% accuracy (see SM for learning curves for these animals). Taking one mouse as an example, we plot the weight...
trajectories inferred under different learning models (Fig. 3). Specifically, we compared a model without learning (RF₀; Fig. 3a); a model with REINFORCE learning and a single learning rate α for all weights (RF₁; Fig. 3b); and a model with REINFORCE learning and separate learning rates for all \(K = 2 \) weights (RF₂; Fig. 3c). We also performed the same analysis for the 13 mouse cohort (see SM for weight decompositions for whole cohort). We measure the model fit in terms of the Akaike Information Criterion (AIC), or the negative log-likelihood penalized by the number of parameters. For the majority of our cohort, the model fit is considerably better (the AIC is smaller) for RF₂ compared to both RF₀ and RF₁ (Fig. 4d).

Allowing per-weight learning rates has interesting implications. When the learning rate is uniform (RF₁), the prescribed weight update is in the direction of the gradient of the expected reward, and therefore follows the path of steepest ascent in the reward landscape. On the other hand, if the learning rate is different for each direction (RF₂), the weight update is not necessarily along the direction of the gradient. We show simulated trajectories for a mouse using the RF₁ and the RF₂ learning rules to update its policy (\(\sigma = 0 \) in this case) in Fig. 5 (lines (b) and (c), respectively). That the AIC for the RF₂ model is so much better than that for the RF₁ model, and that the retrieved weight trajectory for the animal (Fig. 5a) looks so different to the RF₁ trajectory, suggests that the learning behavior of the mouse cannot be explained as a simple gradient ascent on the expected reward landscape.

3.4 Animals shift their effective reward when learning

Whereas the net trajectories from RF₁ and RF₂ look very similar (Fig. 3b-c), they give different results for the learning-noise decomposition (Fig. 3e-f), especially if we focus on the bias (yellow). For RF₁, it is the noise that captures most of the changes in the bias, while the contribution of the learning component is negligible (Fig. 3e). For RF₂, the learning component for the bias is more dynamic, but its cumulative effect deviates more significantly from the inferred trajectory (Fig. 3f).
Figure 4: Population analysis for 13 IBL mice. (a) The average fraction of the trial-to-trial weight updates along the learning direction, as prescribed by three learning models RF_1, RF_K, and $RF_β$. Each open circle represents a mouse; the example mouse from Fig. 3 is marked by a filled circle. The solid bars indicate the mean fraction across the animal cohort. Whereas the mean fraction of animals’ weight updates due to learning is just 0.30 for the RF_1 model, it is 0.92 for the $RF_β$ model. (b) The inferred learning rates and baselines, for the contrast and bias weights, from each mouse using the $RF_β$ model. (c) Model comparison across learning rules within RF family, and beyond it (see Sec. 3.5 for a description of AAR and RAR learning rules), in terms of the difference in their Akaike Information Criterion (AIC) relative to the REINFORCE model (RF_K). Each line is a mouse, and our example mouse is marked in black. (d) Model comparison within the family of REINFORCE models, with different numbers of varied learning rates. One outlier mouse was excluded from this figure for visibility (the AIC decreased by a massive 126.5 for the RF_K model relative to the RF_0 model). Our example mouse is marked in black.

The consistently larger slope of the cumulative learning, compared to the net weight trajectory, suggests that our learning model for the trial-to-trial weight change is missing an additive offset.

To introduce additive offsets to the learning component, we considered another learning model, REINFORCE with baseline ($RF_β$; Eq. 5), with separate learning rates and baselines for different weights. We used the $RF_β$ model to infer the weight trajectories (Fig. 3d), and plotted their decompositions into learning and noise components (Fig. 3g). Interestingly, the trial-to-trial weight changes are almost entirely captured by the learning components (Fig. 3g), which was consistent across the entire cohort of 13 mice (see SM).

From the inferred hyperparameters for the $RF_β$ model (Fig. 4b), we can make several observations. Firstly, for all animals in the cohort, the learning rate for the bias is larger than the learning rate for the weight on the contrast. This is consistent with the finding that allowing per-weight learning rates, as in the RF_K model, leads to vast improvements in AIC compared to RF_1 models with a single learning rate. The larger learning rate associated with the bias indicates that mice adjust their bias on a faster timescale than they adjust the weight they place on the contrast (which can also be readily observed in the retrieved weight trajectories of Fig. 3a-d). Understanding why animals’ choice biases fluctuate on such short timescales will be an interesting question to explore in future work.

Secondly, we look to values of the retrieved baseline parameters in Fig. 4b in order to postulate as to why the REINFORCE with baseline model, as opposed to any of the other learning models we consider, is capable of explaining the trial-to-trial weight updates used by real animals. We notice that the baseline values for all animals for both the stimulus and bias are non-zero. Recall that with $RF_β$, as given by Eq. 5, the effective reward for a correct trial is $(1 - \beta_k)$, and β_k for an incorrect trial. Thus, compared to the RF_1 and RF_K models, the $RF_β$ model results in non-zero weight updates for error trials. Furthermore, the baseline values are not equal to 0.5 (since $r_{αt, βt} \in \{0, 1\}$) indicates that error and correct trials result in updates of different sizes. Finally, the fact that the retrieved baseline values are often negative or, when they are positive, are greater than 1 allows for the sign of the weight update given in Eq. 5 to change for either correct trials (in the case that the baseline is larger than 1) or error trials (in the case that the baseline is negative). In this way, the $RF_β$ model may be better equipped to handle seemingly ‘suboptimal’ weight updates that do not seem to maximize expected reward. However, fully understanding why the $RF_β$ learning rule, as opposed to the RF_K
and RF$_1$ learning rules, explains the trial-to-trial weight changes of real animals will require further analyses and will be explored in future work.

3.5 Model comparison for different learning models

So far, our approach in this work was to only introduce new parameters if they improved the model (either in terms of the fit, or the interpretability); the lower AIC values obtained by allowing separate learning rates (RF$_K$), or adding baselines (RF$_\beta$), justified our modeling choices (Fig. 4c-d).

But the generality of model comparison supported by our method is not limited to the inclusion of additional parameters; any learning rule detailing trial-to-trial weight updates can be considered and plugged into Eq. 3. In addition to RF$_1$, RF$_K$ and RF$_\beta$, we compared two other learning rules that are closely related to REINFORCE, but make different assumptions. Specifically, we considered the action-averaged REINFORCE (AAR), $[\Delta w]_k = \alpha_k \cdot p_y \cdot \epsilon_y(1 - p_y)|x|_k$, where effective reward is averaged over the choice probability; and the reward-agnostic REINFORCE (RAR), $[\Delta w]_k = \alpha_k \cdot \epsilon_y(1 - p_y)|x|_k$, whose effective reward is a constant 1 (see SM for more rationales).

We find that RF$_1$ provided better fits to more animals, including our example animal (Fig. 4), although there was considerable variation in the preferred learning rule across animals. It will be an interesting future work to compare a broader variety of learning rules.

3.6 Application to other datasets

Our method offers a general method that can be applied to analyze choice behavior in many perceptual decision-making experiments. Here we analyze data from a different animal species (rat) learning a different task [2], where the stimulus is a delayed pair of two auditory tones (see Fig. 6 and caption for task details). Now we need three weights (bias and two tone sensitivities) to describe the decision-making behavior. We first recovered the three weight trajectories using a no-learning model (Fig. 6a), and performed similar analyses as before, using the three learning models RF$_1$, RF$_K$ and RF$_\beta$. As we show in the SM, the RF$_1$ and RF$_K$ models are once again incapable of explaining the trial-to-trial weight changes in the animals’ policies; however, as shown in Fig. 6d, the RF$_\beta$ model is equipped to explain the majority of the trial-to-trial weight updates. See SM for the full set of results for this dataset.

4 Discussion

In this work, we develop a novel framework for extracting the learning rules underpinning animal behavior as mice and rats learn to perform perceptual decision-making tasks. Our method can accurately infer the time-varying weights governing an animal’s policy, along with an animal’s learning rates for different weights, hyperparameters governing the noise in different weights, as well as any reward baselines that the animal may be using in order to update its policy. We validated our method on simulated data, and applied it to a cohort of 13 mice learning to perform a sensory
Figure 6: Results from a rat auditory discrimination task [2]. (a) We track an example rat’s choice bias (yellow) and the sensitivity to two stimuli (red, blue) while training on the task described in (b). (b) In this task, a rat hears two tones of different amplitudes (tones A and B) separated by a delay. If tone A is quieter than B, the rat must nose-poke into the left port for reward, and vice-versa if tone A is louder than B. (c) We now use the RFβ model to predict how our rat updates its behavior. (d) The weights from (c) are decomposed into learning (solid) and noise (dashed) components, as in Fig. 3g.

Based on applications to two datasets, we were able to make several novel observations about animal learning, two of which we feel are particularly interesting. First, our best-fit model shows that different components of an animal’s policy, controlled by different weights in our model, are updated with different learning rates. This implies that animal learning does not necessarily follow the gradient of the expected reward landscape at every trial. Although weight-specific learning rates α_k were formally proposed in [35], our work provides empirical evidence for weight-specific learning in real animals. Second, we found that the REINFORCE with baseline (RFβ) model, with additive offsets to the effective reward, does particularly well in capturing the trial-to-trial weight changes along the dimension of prescribed learning. This finding was upheld in a second dataset involving rats learning a task with a two-dimensional stimulus space. Given that the prescribed learning rule affects only a 1-D subspace of the model weights, the success of RFβ to capture fluctuations in this higher-dimensional weight space is even more remarkable. Understanding of the role of baselines (effective reward offsets), as well as an investigation of whether they vary over time (as in, for example, the Actor-Critic framework [30]) present promising directions for future work.

We briefly discuss several limitations of our method. Our model of learning does not incorporate sensory uncertainty [14, 21], history dependence [2, 6, 10] or state dependence [3], all of which are known to affect decision-making behavior. Our model can, however, be readily extended to allow more flexible descriptions of learning rates and baselines, for example by introducing session-by-session changes for the hyperparameters [24]. Furthermore, an exciting future direction will be to compare our model of choice behavior with value function based models, such as variants of Rescorla-Wagner [22], or other dynamic models such as those considered in [26, 27]. While [15] provides support for the view that humans use policy-gradient methods instead of value prediction, Temporal Difference (TD) methods are more typically used to model choice behavior in the computational cognitive science community, and a comparison of our model with some standard TD models would help contextualize our work. Despite these limitations, we believe that our method can be readily applied to study different tasks, animal species, and learning models; and that it can be used to provide insights into empirical features of animal learning. We believe our approach will provide a powerful framework for the data-driven investigation of animal learning behavior.
Broader Impact

Our work seeks to describe and predict the choice behavior of rodents in the context of decision-making experiments. We hope that neuroscientists and psychologists use our framework to better understand learning within their own experiments, and we have publicly released our code so as to enable this (https://github.com/pillowlab/psytrack_learning). Additionally, our work leverages data from two new publicly available datasets [2, 11], acting as an example of the value of open-science practices.

Acknowledgments and Disclosure of Funding

We thank Peter Dayan, Yotam Sagiv and Sam Zorowitz for helpful comments and discussion at the beginning of this project. We thank Nathaniel Daw, Alejandro Pan-Vazquez, Yoel Sanchez Araujo and Ilana Witten for useful comments and discussion as this project was being completed. Finally, we thank the anonymous NeurIPS reviewers for their insightful comments and feedback.

JWP was supported by grants from the Simons Collaboration on the Global Brain (SCGB AWD543027), the NIH BRAIN initiative (NS104899 and R01EB026946), and a U19 NIH-NINDS BRAIN Initiative Award (5U19NS104648).

References

Supplementary material

Contents

A Case-by-case evaluation of learning rules (extension of Section 2.3) .. 1
B Inference of weight trajectory (extension of Section 2.4) ... 2
C Additional information about datasets studied (extension of Section 3) ... 2
C.1 Mouse visual detection task ... 2
C.2 Rat auditory discrimination task .. 2
D Different learning rates for different weights (extension to Section 3.3) .. 5
E Additional recovery analyses (extension to Section 3.1) ... 5
F Noise and RF model (extension to Section 3.4) .. 5
G Motivation for RAR and AAR Learning Rules (extension to Section 3.5) 9
G.1 Reward-Agnostic REINFORCE (RAR) ... 9
G.2 Action-Averaged REINFORCE (AAR): ... 9
H Retrieved weights for mice & rats and RF & RF learning rules ... 10

A Case-by-case evaluation of learning rules (extension of Section 2.3)

In Table S1, we provide a case-by-case evaluation of the REINFORCE [7], REINFORCE with baseline, Action-Averaged REINFORCE (AAR), and Reward-Agnostic REINFORCE (RAR) learning rules for every action taken \(a_t\) and every correct response \(\bar{y}_t\). Here, \(p_R \equiv p_R(x_t, w_t) = \frac{\exp(x_t \cdot w_t)}{1+\exp(x_t \cdot w_t)}\) from Eq. 1, and all of the other notation is the same as in text.

Table S1: Update to the \(k\)-th weight component according to different learning rules, after each pair of a chosen action, \(a_t\) and the correct action, \(\bar{y}_t\). The trial index \(t\) is omitted from the values in the table. Sub-tables represent four learning rules, (a) REINFORCE, (b) REINFORCE with baseline, (c) action-agnostic REINFORCE, and (d) reward-agnostic REINFORCE, the first two of which correspond to equations in text.

<table>
<thead>
<tr>
<th></th>
<th>(a_t = L)</th>
<th>(a_t = R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{y}_t = L)</td>
<td>(-\alpha_k(p_R)[x_k])</td>
<td>0</td>
</tr>
<tr>
<td>(\bar{y}_t = R)</td>
<td>0</td>
<td>(\alpha_k(1 - p_R)[x_k])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(a_t = L)</th>
<th>(a_t = R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{y}_t = L)</td>
<td>(-\alpha_k(1 - \beta_k)p_R[x_k])</td>
<td>(-\alpha_k\beta_k(1 - p_R)[x_k])</td>
</tr>
<tr>
<td>(\bar{y}_t = R)</td>
<td>(\alpha_k\beta_k p_R [x_k])</td>
<td>(\alpha_k(1 - \beta_k)(1 - p_R)[x_k])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(a_t = L)</th>
<th>(a_t = R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{y}_t = L)</td>
<td>(-\alpha_k p_R(1 - p_R)[x_k])</td>
<td></td>
</tr>
<tr>
<td>(\bar{y}_t = R)</td>
<td>(\alpha_k p_R(1 - p_R)[x_k])</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(a_t = L)</th>
<th>(a_t = R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{y}_t = L)</td>
<td>(-\alpha_k(p_R)[x_k])</td>
<td></td>
</tr>
<tr>
<td>(\bar{y}_t = R)</td>
<td>(\alpha_k(1 - p_R)[x_k])</td>
<td></td>
</tr>
</tbody>
</table>
B Inference of weight trajectory (extension of Section 2.4)

Here, we elaborate on our inference procedure for weights w and hyperparameters ϕ. Our weights on a trial t are the K-element vector w_t corresponding to the K-elements in the input vector on that trial, x_t. We arrange all of the $\{w_t\}$ into a single vector by concatenating the kth element from each w_t into a vector of length T, then concatenating those K vectors into a single vector of length KT. That is, $w = [w_{k=1,t=1}, \ldots, w_{1,T}, w_{2,1}, \ldots, w_{K,T}]$.

The prior distribution on our weights w is given according to $N(\mu, C)$ with mean $\mu = D^{-1}v$ and covariance $C^{-1} = D^{-\top} \Sigma^{-1} D$. Here D is a difference matrix, constructed as K copies of a $T \times T$ matrix stacked block diagonally, where each $T \times T$ block has $+1$ along the main diagonal and -1 along the lower off-diagonal. Practically, $[\Delta w]_t = [Dw]_t$, while D^{-1} is effectively taking a cumulative sum. Σ is a $KT \times KT$ diagonal matrix where the diagonal vector is assembled by replicating each of the σ_k hyperparameters T-times, $\text{diag}(\Sigma) = [\sigma_1, \ldots, \sigma_1, \sigma_2, \ldots, \sigma_K]$. Using Eq. 1, we define the likelihood of the model as $p(w|D, \phi) = N(w_{\text{MAP}}, -H^{-1})$. We are now able to approximate the marginal likelihood, or evidence, of our model:

$$p(y|x, \phi) = \frac{p(y|x, w)p(w|\phi)}{p(w|D, \phi)} \approx \frac{L \cdot N(w_{\text{MAP}}, -H^{-1})}{N(w|w_{\text{MAP}}, -H^{-1})}. \quad (S1)$$

We then numerically maximize the model evidence with respect to the hyperparameters, ϕ (see Alg. 1 for pseudocode).

Algorithm 1 Inference of weight trajectories and hyperparameters

Require: inputs x, choices y

Require: initial hyperparameters ϕ_0, initial weights w_0

1: repeat
2: repeat
3: numerically optimize log-posterior w.r.t. w, given current ϕ (Eq. 6)
4: until w converges return w_{MAP} and the Hessian H
5: determine Laplace approximation to the posterior distribution, $N(w_{\text{MAP}}, -H^{-1})$
6: calculate model evidence (Eq. S1)
7: take one step in numerical optimization of log-evidence w.r.t ϕ
8: until ϕ converges return current w_{MAP} and ϕ

C Additional information about datasets studied (extension of Section 3)

Here we provide additional details about the datasets we analyzed in Section 3.

C.1 Mouse visual detection task

We obtained the publicly available behavioral dataset associated with [4] from [6]. This dataset comprises decision-making data from 101 mice across seven laboratories. We restrict our analysis here to the mice from one of the seven laboratories, resulting in the 13 animals mentioned in the text. This gave us a large enough cohort for examining commonalities in learning across animals, while also being small enough that we could fit all models to all animals with reasonable compute resources. For each of the 13 mice we studied, we fit all of our models to their first 6000 trials of training. During these trials, most animals progressed from chance level (50%) accuracy to above 70% (and often much higher) accuracy on the “easy” stimuli (different stimuli are introduced over time, so we plot the learning curves using only the “easy” stimuli that are present at all sessions); see Fig. S1 for the learning curves for these animals.

C.2 Rat auditory discrimination task

We obtained the publicly available dataset associated with [2] from [1]. We analyzed the first 6000 trials from each of the 19 rats in this dataset (excluding pre-training trials, where the task rule was not enforced and all choices were rewarded; see [1]). During this stage of training, most rats progress from chance level (50%) accuracy to 55-70% (this is a particularly difficult task for the animals to learn due, to the delay between tones); see Fig. S2 for the learning curves for these animals.
Figure S1: Accuracy on “easy” stimuli (different stimuli are introduced over time, so we plot the learning curves using only the “easy” stimuli that are present at all sessions) across 10,000 trials for 13 mice learning IBL visual detection task. Vertical lines indicate session boundaries; individual data points indicate accuracy for a given session.
Learning curves: Akrami et al. rats

![Graph showing accuracy across 6,000 trials for 19 rats learning auditory discrimination task. Vertical lines indicate session boundaries; individual data points indicate accuracy for a given session.](image)

Figure S2: Accuracy across 6,000 trials for 19 rats learning auditory discrimination task. Vertical lines indicate session boundaries; individual data points indicate accuracy for a given session.
Different learning rates for different weights (extension to Section 3.3)

In Fig. S3, we graphically explore the consequences of having different learning rates for different weights. Panel (a) corresponds to having a single learning rate for all weights. For a task like the IBL task, the stochastic gradient ascent update associated with the REINFORCE learning rule points in the direction of the gradient of the expected reward (since a REINFORCE update for any sampled stimulus-action pair will cause the animal to improve for any other stimulus). Thus, for a single learning rate parameter, the direction of the weight update is in the direction of the gradient of the expected reward landscape. In comparison, when different learning rates are permitted for each weight, the weight update direction may not be in the direction of steepest ascent in the reward landscape (panel (b)). Consequently, having separate learning rates for each weight allows for a broader range of learning trajectories in the expected reward landscape (panel (c)).

![Figure S3: Schematic for the interpretation of having different learning rates for different weights. (a) Single learning rate for all weights. (b) Different learning rates for different weights. (c) In the case of different learning rates, the learning trajectory may not follow the path of steepest ascent in the reward landscape.](image)

Additional recovery analyses (extension to Section 3.1)

In Figure S4, we perform an equivalent analysis to that shown in Figure 2 and show that we can recover the REINFORCE with baseline learning rule parameters in simulation. Meanwhile, in Figure S5, we explore the effect of Model Mismatch. In panel (c), we show that AIC allows us to correctly identify the generative model from RF₀, RF₁, RFₖ and RFₜ when data is simulated from each of these models and then fit with each of these models.

Noise and RFₜ model (extension to Section 3.4)

In Figure S6, we explore the necessity of including a noise term (i.e., allowing σₖ ≠ 0) with the RFₜ model. As shown in Figure 3, the REINFORCE with baseline model does a good job of capturing the trial-to-trial updates in the weights governing an animal’s policy. This then begs the question of whether it is necessary to include the noise term in the weight update of Equation 2. In Figure S6, we explore the effect of including and excluding a noise term when recovering weights generated from an RFₜ model with a small amount of noise (using the noise hyperparameters recovered from fitting real animal data), and we see that the model without noise fails to appropriately capture many of the trial-to-trial updates in the simulated weight trajectory. Additionally, AIC is worse for the noiseless model. Hence, it is important to include the noise term when fitting real animals’ data with the RFₜ model.
Figure S4: Recovery of weights in t (a) Here we simulate a set of weights (in grey) using our REINFORCE with baseline model (similar to Fig. 2 for REINFORCE). We see that our recovered weights (plotted with a 95% credible interval) closely follow the true simulated weights. (b) Here we plot the learning components of the weights in (a). (c) Here we plot the noise components of the weights in (a). (d) Here we recover the six hyperparameters of the model. The σ and α hyperparameters are recovered in log₂ space. We found that our optimization has a more robust recovery of the quantity α · β rather than the baseline hyperparameters β directly. This α · β quantity is recovered in non-log space. All error bars are calculated in non-log space and represent ±1SE. All hyperparameters are accurately recovered.
Figure S5: Exploring the impact of model mismatch. (a) Here we simulate four sets of weight trajectories (grey lines) from four of our models: no learning, REINFORCE with a single learning rate, REINFORCE with multiple learning rates, and REINFORCE with baselines. These four simulated trajectories (model indicated by row) are then recovered using each of the four models (model indicated by column; recovered weight trajectories are colored). Weights are simulated for 10,000 trials, and the depicted range of weight values is from -6 to +6. We can see that the weight trajectories recovered are all accurate, regardless of the simulated or recovery model. Gray background shading indicates that the recovery model matches the generative model. (b) The same as in (a) except only the learning component of the recovery is shown (the first column is the recovery under the no learning model, so there is no learning component to show). We see that despite the uniformity of the recovered weights, the recovered learning components vary greatly depending on the recovery model. (c) We calculate the AIC for each of the 16 models fit. Here each line corresponds to a row in (a), where the value plotted is recovered AIC minus the AIC of the recovery under the generative model. We see that for each line (each set of weights generated under a different generative model), the recovery under the matching model is the one with the lowest AIC. This suggests that our method can properly select between models.
Figure S6: Recovery of weights without noise. (a) Here we simulate weights from our REINFORCE with baseline model using very little noise (grey lines) and recover weights for a model without noise (colored lines). That is, we optimize for the α and β hyperparameters while fixing the σ to a negligible amount ($\sigma = 2^{-32}$ specifically). The model was simulated with a small amount of noise ($\sigma = 2^{-8}$), such that the learning contribution accounts for the vast majority of the weight trajectory. While S5 shows that models with noise all tend to recover roughly the same weight trajectories (independent of the learning model), fitting without noise can cause significant errors in the weight recovery (see red circle). (b) The same set of simulated weights as in (a), recovered with the standard REINFORCE with baseline model (with noise). We see that adding back noise allows the model to precisely capture the simulated weights. There is also a substantial decrease in model AIC ($\Delta AIC > 100$), indicating that noise clearly improves the model.
G Motivation for RAR and AAR Learning Rules (extension to Section 3.5)

In Fig. 4, we compared the REINFORCE learning rule to two closely related learning rules, which we termed “Reward-Agnostic REINFORCE” (RAR) and “Action-Averaged REINFORCE” (AAR). Here we provide additional motivation for each of these learning rules.

G.1 Reward-Agnostic REINFORCE (RAR)

We obtain the Reward-Agnostic REINFORCE (RAR) learning rule by assuming that the animal is trying to minimize a cross-entropy loss, labeled E_t at trial t, between the animal’s choice probability, $p_{R,t}$ or $1 - p_{R,t}$, and the “correct” choice probability for the trial. This “correct” choice probability can be written as a Kronecker delta, $\delta_{\bar{y}_t, R}$, which is 1 if $\bar{y}_t = R$ and 0 otherwise. Similarly for $\delta_{\bar{y}_t, L}$.

$$E_t = -\delta_{\bar{y}_t, R} \log(p_{R,t}) - \delta_{\bar{y}_t, L} \log(1 - p_{R,t})$$

(S2)

The gradient descent update for the cross-entropy loss is:

$$\Delta w = -\alpha \frac{\partial E}{\partial w} = \begin{cases} \alpha (1 - p_R) x & \bar{y} = R \\ -\alpha p_R x & \bar{y} = L \end{cases}$$

(S3)

Observe: this looks extremely similar to the REINFORCE update given in Eq. 4 and in Table S1 except that the RAR update does not depend on the action that the animal took, and instead all that matters is the side that was associated with the reward. For the same learning rate, we would expect that REINFORCE and RAR would give the same weight updates if the animal chose the correct action on every trial. Because of the differences in the updates for RAR and REINFORCE for error trials (for the reward function in $\{0, 1\}$, REINFORCE does not provide a weight update on error trials; in comparison, RAR gives an update regardless of the action that the animal took), an artificial agent using RAR should learn the task faster than agent learning using REINFORCE with the same learning rate.

G.2 Action-Averaged REINFORCE (AAR):

By assuming that the animal maximizes the expected reward landscape directly instead of sampling its action from action space A, we obtain the Action-Averaged REINFORCE (AAR) learning rule.

Specifically, let’s consider the animal’s expected reward on a given trial:

$$J(w) = \sum_s \mu(s) \sum_a r(s, a) \pi(a|s, w),$$

(S4)

where $\mu(s)$ is the animal’s estimate of the probability distribution over stimuli, s; $r(s, a)$ is the reward associated with taking action a when presented with stimulus s; and $\pi(a|s, w)$ is the animal’s policy, which is parameterized by weights w, and which gives the probability of taking action a when presented with stimulus s.

The gradient of the expected reward (where $\nabla = \nabla_w$) is:

$$\nabla J(w) = \sum_s \mu(s) \sum_a r(s, a) \nabla \pi(a|s, w)$$

(S5)

If we assume that the animal uses only its most recent trial in order to estimate the state probability function, $\mu(s)$ is a delta function peaked at s_t. Furthermore, let $\pi(a|s, w)$ be the policy we considered in Eq. 1. Then we get the gradient ascent update:

$$\Delta w = \alpha \nabla J(w) = \alpha \sum_a r(s_t, a) \nabla \pi(a|s_t, w)$$

(S6)

$$= \alpha [r(s_t, R) - r(s_t, L)] \pi(R|s_t, w) \pi(L|s_t, w) x_t$$

(S7)

When $r(s_t, R)$ and $r(s_t, L)$ are in $\{0, 1\}$, and when we allow weight-specific learning rates, this reduces to the AAR update we provided in text (where, as in text, we have omitted the subscript t):

$$[\Delta w]_k = \alpha_k \cdot p_{\bar{y}} \cdot \epsilon_{\bar{y}} \cdot (1 - p_{\bar{y}}) [x]_k$$

(S8)

Here, \bar{y} is the correct answer for this trial and $p_{\bar{y}} \equiv p(\bar{y}|s, w)$ is the probability that the animal makes the correct choice on this trial; $\epsilon_R = +1$; $\epsilon_L = -1$ (this is the same notation that we used in text). This rule was also proposed by Bak et al. [3], where it was called “RewardMax”.

9
In Figure Fig. S7, we show the weight trajectories (left column) and their decompositions into learning and noise components (right column) for 13 mice learning the International Brain Laboratory’s visual detection task for the RFₖ learning rule introduced in Eq. 4. We show the same for 13 rats learning the auditory discrimination task in Fig. S9 (omitting 6 of our 19 rats so as to fit the figure on a single page). In Fig. S7, the orange line corresponds to the weight the animal places on its bias, while the purple line shows its weight on the stimulus; in Fig. S9, the orange line indicates the weight the animal places on its bias, and the red and blue indicate the weights it places on each of the stimuli (the task is 2-dimensional). In each case, grey vertical lines partition sessions. In the right panel, the solid line shows the learning contribution of the RFₖ learning rule to the trial-to-trial weight changes; the noise contribution to the trial-to-trial weight trajectories is indicated by the dashed line.

Crucially, we see that the phenomenon observed for the example mouse shown in Fig. 3 is observed across all animals in both cohorts: while the RFₖ model can capture trial-to-trial changes in the weights that the mice and rats use to make their decisions (left panel), it is the noise component, not the learning component in this model that is responsible for capturing these changes (right panel; large shaded regions). This is particularly true for the bias weight for both sets of animals.

In Figures Fig. S8 and Fig. S10, we show the analogous plots to those mentioned above but when the RFₖ learning rule is replaced with the RF₇ learning rule of Eq. 5. We see that for all 13 mice in the IBL cohort, and for the majority of rats learning the auditory discrimination task, the RF₇ rule is able to capture trial-to-trial weight changes with the learning component of this rule. Note: the initial contribution to the noise component (at t = 0) is removed from the right column in all plots for visibility, resulting in the learning components shown in the right panel to be vertically shifted relative to the full weight trajectories shown in the left panel.
IBL mice modeled with REINFORCE

Figure S7: See figure description above.
IBL mice modeled with REINFORCE with baselines

inferred weight trajectories

decomposition into learning & noise

Figure S8: See figure description above.
rats modeled with REINFORCE

inferred weight trajectories
decomposition into learning & noise

Figure S9: See figure description above.
rats modeled with REINFORCE with baselines

inferred weight trajectories
tone A
tone B
tone B
bias

decomposition into learning & noise

Figure S10: See figure description above.
Supplementary References

