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Abstract

Neural responses in visual cortex are influenced by visual stimuli and by ongo-
ing spiking activity in local circuits. An important challenge in computational
neuroscience is to develop models that can account for both of these features in
large multi-neuron recordings and to reveal how stimulus representations interact
with and depend on cortical dynamics. Here we introduce a statistical model of
neural population activity that integrates a nonlinear receptive field model with a
latent dynamical model of ongoing cortical activity. This model captures temporal
dynamics and correlations due to shared stimulus drive as well as common noise.
Moreover, because the nonlinear stimulus inputs are mixed by the ongoing dynam-
ics, the model can account for a multiple idiosyncratic receptive field shapes with
a small number of nonlinear inputs to a low-dimensional dynamical model. We
introduce a fast estimation method using online expectation maximization with
Laplace approximations, for which inference scales linearly in both population
size and recording duration. We test this model to multi-channel recordings from
primary visual cortex and show that it accounts for neural tuning properties as
well as cross-neural correlations.

1 Introduction

Neurons in sensory cortices organize into highly-interconnected circuits that share common input,
dynamics, and function. For example, across a cortical column, neurons may share stimulus de-
pendence as a result of sampling the same location of visual space, having similar orientation
preference [1]] or receptive fields with shared sub-units [2]. As a result, a substantial fraction of
stimulus-information can be redundant across neurons [3]. Recent advances in electrophysiology
and functional imaging allow us to simultaneously probe the responses of the neurons in a column.
However, the high dimensionality and (relatively) short duration of the resulting data renders analy-
sis a difficult statistical problem.

Recent approaches to modeling neural activity in visual cortex have focused on characterizing the re-
sponses of individual neurons by linearly projecting the stimulus on a small feature subspace that op-
timally drives the cell [4}15]. Such “systems-identification” approaches seek to describe the stimulus-
selectivity of single neurons separately, treating each neuron as an independent computational unit.
Other studies have focused on providing probabilistic models of the dynamics of neural populations,
seeking to elucidate the internal dynamics underlying neural responses [6, [7, 18, [9} 10, [11]. These
approaches, however, typically do not model the effect of the stimulus (or do so using only a linear
stimulus drive). To realize the potential of modern recording technologies and to progress our un-
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derstanding of neural population coding, we need methods for extracting both the features that drive
a neural population and the resulting population dynamics [[12].

We propose the Quadratic Input Latent Dynamical System (QLDS) model, a statistical model that
combines a low-dimensional representation of population dynamics [9]] with a low-dimensional de-
scription of stimulus selectivity [[13]. A low-dimensional dynamical system governs the population
response, and receives a nonlinear (quadratic) stimulus-dependent input. We model neural spike
responses as Poisson (conditional on the latent state), with exponential firing rate-nonlinearities. As
a result, population dynamics and stimulus drive interact multiplicatively to modulate neural fir-
ing. By modeling dynamics and stimulus dependence, our method captures correlations in response
variability while also uncovering stimulus selectivity shared across a population.
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Figure 1: Schematic illustrating the Quadratic input latent dynamical system model (QLDS).
The sensory stimulus is filtered by multiple units with quadratic stimulus selectivity (only one of
which is shown) which model the feed-forward input into the population. This stimulus-drive pro-
vides input into a multi-dimensional linear dynamical system model which models recurrent dynam-
ics and shared noise within the population. Finally, each neuron y; in the population is influenced
by the dynamical system via a linear readout. QLDS therefore models both the stimulus selectivity
as well as the spatio-temporal correlations of the population.

2 The Quadratic Input Latent Dynamical System (QLDS) model

2.1 Model

We summarize the collective dynamics of a population using a linear, low-dimensional dynamical
system with an n-dimensional latent state x;. The evolution of x; is given by

Xt = Axi—1 + fo(hy) + €, (D
where A is the n X n dynamics matrix and € is Gaussian innovation noise with covariance matrix
Q, e, ~ N(0,Q). Each stimulus h; drives some dimensions of x; via a nonlinear function of the
stimulus, f,, with parameters ¢, where the exact form of f(-) will be discussed below. The log
firing rates z; of the population couple to the latent state x; via a loading matrix C,

Zt:CXt+D*St+d. (2)

Here, we also include a second external input s;, which is used to model the dependence of the
firing rate of each neuron on its own spiking history [14]. We define D * s; to be that vector
whose k-th element is given by (D x* s;) = vazsl Dy, isk,t—i. D therefore models single-neuron
properties that are not explained by shared population dynamics, and captures neural properties such
as burstiness or refractory periods. The vector d represents a constant, private spike rate for each
neuron. The vector x; represents the n-dimensional state of m neurons. Typically n < m, so the
model parameterizes a low-dimensional dynamics for the population.

We assume that, conditional on z;, the observed activity y; of m neurons is Poisson-distributed,
Ykt ~ Poisson(exp(zg ¢)). 3)

While the Poisson likelihood provides a realistic probabilistic model for the discrete nature of spik-

ing responses, it makes learning and inference more challenging than it would be for a Gaussian

model. As we discuss in the subsequent section, we rely on computationally-efficient approxima-
tions to perform inference under the Poisson observation model for QLDS.



2.2 Nonlinear stimulus dependence

Individual neurons in visual cortex respond selectively to only a small subset of stimulus features
[4)115]. Certain subpopulations of neurons, such as in a cortical column, share substantial receptive
field overlap. We model such a neural subpopulation as sensitive to stimulus variation in a linear
subspace of stimulus space, and seek to characterize this subspace by learning a set of basis vectors,
or receptive fields, w;. In QLDS, a subset of latent states receives a nonlinear stimulus drive, each
of which reflects modulation by a particular receptive field w;. We consider three different forms
of stimulus model: a fully linear model, and two distinct quadratic models. Although it is possi-
ble to incorporate more complicated stimulus models within the QLDS framework, the quadratic
models’ compact parameterization and analytic elegance make them both flexible and computation-
ally tractable. What’s more, quadratic stimulus models appear in many classical models of neural
computation, e.g. the Adelson-Bergen model for motion-selectivity [16]]; quadratic models are also
sometimes used in the classification of simple and complex cells in area V1 [4]].

We express our stimulus model by the function f4(h;), where ¢ represents the set of parameters de-
scribing the stimulus filters w; and mixing parameters a;, b; and ¢; (in the case of the quadratic mod-
els). When fg(h;) is identically 0 (no stimulus input), the QLDS with Poisson observations reduces
to what has been previously studied as the Poisson Latent Dynamical System (PLDS) [17, (18, 9].
We briefly review three stimulus models we consider, and discuss their computational properties.

Linear: The simplest stimulus model we consider is a linear function of the stimulus,
f(h) = Bhy, “)
where the rows of B as linear filters, and ¢ = {B}. This baseline model is identical to [18[9]] and

captures simple cell-like receptive fields since the input to latent states is linear and the observation
process is generalized linear.

Quadratic: Under the linear model, latent dynamics receive linear input from the stimulus along
a single filter dimension, w;. In the quadratic model, we permit the input to each state to be a
quadratic function of w;. We describe the quadratic by including three additional parameters per
latent dimension, so that the stimulus drive takes the form

fe.i(he) = a; (wlhy)” + b; (WIhy) + c;. )
Here, the parameters ¢ = {w;,a;,b;,¢; : i =1,...,m} include multiple stimulus filters w; and
quadratic parameters (a;, b;, ;). Equation might result in a stimulus input that has non-zero mean
with respect to the distribution of the stimulus h;, which may be undesirable. Given the covariance
of hy, it is straightforward to constrain the input to be zero-mean by setting ¢; = —a; w3 Y w;, where
. is the covariance of h; and we assume the stimulus to have zero mean as well. The quadratic model
enables QLDS to capture phase-invariant responses, like those of complex cells in area V1.

Quadratic with multiplicative interactions: In the above model, there are no interactions be-
tween different stimulus filters, which makes it difficult to model suppressive or facilitating interac-
tions between features [4]]. Although contributions from different filters combine in the dynamics
of x, any interactions are linear. Our third stimulus model allows for multiplicative interactions
between r < m stimulus filters, with the ¢-th dimension of the input given by

.
fq&,i(ht) = Zai’j (WiTht) (W]Tht) + bz (WiTht) +¢;.
=1
Again, we constrain this function to have zero mean by setting ¢; = — Y7 a; ; (W] Zw;).

2.3 Learning & Inference

We learn all parameters via the expectation-maximization (EM) algorithm. EM proceeds by alter-
nating between expectation (E) and maximization (M) steps, iteratively maximizing a lower-bound
to the log likelihood [19]. In the E-step, one infers the distribution over trajectories x;, given data
and the parameter estimates from the previous iteration. In the M-step, one updates the current pa-
rameter estimates by maximizing the expectation of the log likelihood, a lower bound on the log
likelihood. EM is a standard method for fitting latent dynamical models; however, the Poisson
observation model complicates computation and requires the use of approximations.



E-step: With Gaussian latent states x;, posterior inference amounts to computing the posterior
means p; and covariances Q; of the latent states, given data and current parameters. With Pois-
son observations exact inference becomes intractable, so that approximate inference has to be used
(L8, 20} 21} 22]]. Here, we apply a global Laplace approximation [20l 9] to efficiently (linearly
in experiment duration 7") approximate the posterior distribution by a Gaussian. We note that each
fB(hy) in the E-step is deterministic, making posterior inference identical to standard PLDS models.
We found a small number of iterations of Newton’s method sufficient to perform the E-step.

M-step: In the M-step, each parameter is updated using the means pt; and covariances Q; inferred
in the E-step. Given p; and Q, the parameters A and Q have closed-form update rules that are
derived in standard texts [23]. For the Poisson likelihood, the M-step requires nonlinear optimization
to update the parameters C, D and d [18] [9]. While for linear stimulus functions fy(h;) the M-
step has a closed-form solution, for nonlinear stimulus functions we optimize ¢ numerically. The
objective function for ¢ given by

T
9(¢) = — (e — Ap—r — fs(he)TQ (e — Ape—1 — f(hy))] + const.,

t=2
where p; = E[x¢|y:—1,h]. If ¢ is represented as a vector concatenating all of its parameters, the
gradient of g(¢) takes the form

T

99(¢) -1 of(hy)
—_— == —Api1 — fs(h .
30 Q ;:2(% pi-1 — fo(he)) 90 (6)
For the quadratic nonlinearity, the gradients with respect to f(h;) take the form
ofthe) 1 (11 TnT of(hy) v \2
o = 2o (bTwi) + 0] b7, e U )
of(hy) . p_ of(hy)
o, =h; w;, de; =1 ®)

Gradients for the quadratic model with multiplicative interactions take a similar form. When con-
strained to be 0-mean, the gradient for c; disappears, and is replaced by an additional term in the
gradients for a and w; (arising from the constraint on c).

We found both computation time and quality of fit for QLDS to depend strongly upon the optimiza-
tion procedure used. For long time series, we split the data into small minibatches. The QLDS E-step
and M-step each naturally parallelize across minibatches. Neurophysiological experiments are often
naturally segmented into separate trials across different stimuli and experimental conditions, making
it possible to select minibatches without boundary effects.

3 Application to simulated data

We illustrate the properties of QLDS using a simulated population recording of 100 neurons, each
responding to a visual stimulus of binary, white spatio-temporal noise of dimensionality 240. We
simulated a recording with 7" = 50000 samples and a 10-dimensional latent dynamical state. Five of
the latent states received stimulus input from a bank of 5 stimulus filters (see Fig.[2]A, top row), and
the remaining latent dimensions only had recurrent dynamics and noise. We aimed to approximate
the properties of real neural populations in early sensory cortex. In particular, we set the dynamics
matrix A by fitting the model to a single neuron recording from V1 [4]. When fitting the model,
we assumed the same dimensionalities (10 latent states, 5 stimulus inputs) as those used to generate
the data. We ran 100 iterations of EM, which—-for the recording length and dimensionality of this
system—took about an hour on a 12—core intel Xeon CPU at 3.5GHz.

The model recovered by EM matched the statistics of the true model well. Linear dynamical system
and quadratic models of stimulus selectivity both commonly have invariances that render a particular
parameterization unidentifiable [4}|15], and QLDS is no exception: the latent state (and its parame-
ters) can be rotated without changing the model’s properties. Hence it is possible only to compare
the subspace recovered by the model, and not the individual filters. In order to visualize subspace
recovery, we computed the best /5 approximation of the 5 “true” filters in the subspace spanned by
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Figure 2: Results on simulated data. Low-dimensional subspace recovery from a population of
100 simulated neurons in response to a white noise stimulus. (A) Simulated neurons receive shared
input from 5 spatio-temporal receptive fields (top row). QLDS recovers a subspace capable of
representing the original 5 filters (bottom row). (B) QLDS permits a more compact representation
than the conventional approach of mapping receptive fields for each neuron. For comparison with
the representation in panel A, we here show the spike-triggered averages of the first 60 neurons in the
population. (C) QLDS also models shared variability across neurons, as visualised here by the three
different measures of correlation. Top: Total correlation coefficients between each pair of neurons.
Values below the diagonal are from the simulated data, above the diagonal correspond to correlations
recovered by the model. Center: Stimulus correlations Bottom: Noise correlations. (D) Eigenvalues
of dynamics matrix A (black is ground truth, red is estimated). (E) In this model, stimulus and noise
correlations are dependent on each other, for the parameters chosen in this stimulation, there is a
linear relationship between them. (F) Distribution of population spike counts, i.e. total number of
spikes in each time bin across the population.
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Figure 3: Recovery of stimulus subspace as a function of population size (A) and experiment dura-
tion (B). Each point represents the best filter reconstruction performance of QLDS over 20 distinct
simulations from the same “true” model, each initialized randomly and fit using the same number
of EM iterations. Models were fit with each of three distinct stimulus nonlinearities, linear s (blue),
quadratic (green), and quadratic with multiplicative interactions (red). Stimulus input of the “true”
was a quadratic with multiplicative interactions, and therefore we expect only the multiplicative
model (red) to each low error rates.

the estimated w; (see Fig. 2 A bottom row). In QLDS, different neurons share different filters, and
therefore these 5 filters provide a compact description of the stimulus selectivity of the population
[24]. In contrast, for traditional single-neuron analyses [4] ‘fully-connected’ models such as GLMs
[14] one would estimate the receptive fields of each of the 100 filters in the population, resulting in a
much less compact representation with an order of magnitude more parameters for the stimulus-part
alone (see Fig. 2B).















