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A large body of work has aimed to identify the precise com-
putational roles of various brain regions during perceptual 
decision-making1–8. Recent interest has centered on the 

PFC, which has been shown to carry a wide range of sensory, cog-
nitive and motor signals relevant for integrating sensory informa-
tion and making decisions1,4,6,7,9–12. A barrier to understanding the 
PFC’s functional role, however, is that PFC neurons exhibit mixed 
selectivity, characterized by heterogeneous tuning to multiple task 
variables13. These idiosyncratic single-neuron responses make it dif-
ficult to gain insight into the population-level representation of dif-
ferent sensory and cognitive variables.14–16.

In this study, we analyzed the population-level representation of 
information in the PFC using model-based targeted dimensionality 
reduction (mTDR), a general method for identifying the dimensions 
of population activity that encode information about different task 
variables over time. We applied this method to electrophysiology data 
recorded during a context-dependent perceptual decision-making 
task1, in which a context cue determined what kind of sensory infor-
mation (color or motion) should be used for making a binary deci-
sion on each trial (Fig. 1a,b). In contrast to previous findings, our 
analysis revealed that the encoding of decisions, context and relevant 
as well as irrelevant stimulus variables exhibited rotational dynam-
ics in a multidimensional subspace, involving modulation of two or 
more orthogonal neural activity patterns over time.

We also introduce a new unsupervised method, sequential prin-
cipal component analysis (seqPCA), for decomposing multidimen-
sional representations into an ordered set of axes that capture the 
temporal order in which information about each variable becomes 
available. This method reveals that multidimensional trajectories can 
be divided into an early linear phase, followed by a later rotational 
phase. We used model-based decoding under the mTDR framework 
to show that the transition between these phases corresponded to a 
saturation in decoding accuracy for both sensory and decision infor-
mation, suggesting that the population did not continue to accumu-
late sensory information during the rotational phase.

Taken together, these results substantially extend the prevailing 
picture of decision encoding in the PFC: rather than integrating  
evidence along a single dimension of population activity, with 

amplitude that reflects accumulated evidence17, neural population 
activity enters a phase of rotational dynamics that maintains infor-
mation about the choice as well as relevant and irrelevant sensory 
information over the entire course of a single trial.18–20.

Results
mTDR. To characterize population-level representations in the 
PFC, we introduce mTDR, a dimensionality-reduction method that 
seeks to identify the dimensions of population activity that carry 
information about distinct task variables. We illustrate the basic 
intuition for mTDR with a hypothetical three-neuron population in 
a perceptual decision-making task (Fig. 2). For this example, there 
are two task variables of interest: a sensory stimulus xs and a binary 
decision variable xc. These variables modulate the firing rates in dif-
ferent ways, producing a diverse pattern of population responses 
across conditions (Fig. 2a).

The population-level response can be described as trajectories 
in a three-dimensional (3D) state space, where the coordinates 
along each axis correspond to the firing rates of the three neurons 
(Fig. 2b). Although the full space is 3D, the trajectories exhibit 
low-dimensional structure that is not apparent from the firing 
rates alone. Specifically, the population activity is confined to a 
two-dimensional (2D) plane defined by two axes: a one-dimensional 
(1D) ‘stimulus axis’ (blue arrow) captures information about the 
stimulus strength, whereas a 1D ‘decision axis’ (red arrow) captures 
information about the choice. Projecting the population response 
onto each of these axes reveals the time course of information about 
stimulus level and choice, respectively (Fig. 2c).

The goal of mTDR is to identify these encoding subspaces from 
neural population data. For our three-neuron example, the mTDR 
model describes the time evolution of the population response y(t), 
a vector of three neural firing rates, as:

yðtÞ ¼ xstimðwstim $ sstimðtÞÞ þ xchoiceðwchoice $ schoiceðtÞÞ þ noise ;

ð1Þ

where xstim is the stimulus variable, which takes one of six values 
from [−3, −2, −1, +1, +2, +3], indicating the level of sensory 
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evidence, and xchoice denotes the decision variable, which takes on 
values of ± 1, indicating a positive or negative choice. The activity 
vectors wstim and wchoice are patterns of activity across the three neu-
rons, specifying the stimulus and choice axes (blue and red arrows 
in Fig. 2b), and the time-varying functions sstim(t) and schoice(t) are 
temporal profiles for the activity along stimulus and choice axes, 

respectively (Fig. 2c). Noise is added to each firing rate to account 
for variability not due to task variables.

Although the choice and decision subspaces in this example are 
both 1D, the mTDR model easily generalizes to higher dimension-
ality and for an arbitrary number of task variables. Let Y denote a 
neurons × time matrix of firing rates for a single condition defined 
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Fig. 1 | Context-dependent decision-making task and neural responses. a, On each trial, the animal was presented with a context cue (yellow dot or 
blue cross) indicating which dimension of the stimulus the animal was to attend to, followed by a stimulus of colored, moving dots. On motion-context 
trials, the animal was cued to respond to the dominant dot motion direction. In color-context trials, the animal was cued to respond to the dominant color 
of the dots. b, The strength of both the color (red or green) and motion (left or right) stimulus took on one of six possible coherence levels, making for 
many possible task conditions (2 choices × 2 contexts × 6 motion strengths × 6 color strengths = 144 possible combinations). c, PSTHs of representative 
neurons for monkey A. Motion-context PSTHs were sorted by motion coherence and averaged over color coherence. Color-context PSTHs were sorted 
by color coherence and averaged over motion coherence. Red–indigo color scale indicates motion coherence, where red indicates the preferred motion 
direction. Gold–blue color scale indicates color coherence, where gold indicates the preferred color direction. 
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Fig. 2 | Schematic illustrating low-dimensional population-level encoding in a binary sensory decision-making task. a, Conditional PSTHs for three 
neurons that exhibit mixed selectivity to a stimulus variable (taking on six different values) and a choice variable (taking on two values). b, Modulations 
of the PSTHs by the task variables span a 2D ‘encoding subspace’, which is low-dimensional relative to the 3D space of firing rates. In this case, a 1D 
stimulus-encoding subspace (blue arrow) captures all information about the stimulus value, whereas a 1D choice-encoding subspace (red arrow) captures 
all information about the decision. Note, for example, that the neuron 2 firing rate axis is nearly orthogonal to the choice axis, meaning that neuron 2 
carries almost no information about choice. c, Projections onto the stimulus and choice subspaces reveal the time course of information about stimulus 
and choice, respectively. These time courses can be seen as temporal basis functions for the single-neuron PSTHs shown in a. mTDR aims to recover 
these encoding subspaces even in the presence of additional components that take neural activity outside the plane spanned by these two axes and is not 
restricted to 1D subspaces.
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by task variables {x1, …xP}. The mTDR model decomposes popula-
tion activity as:

Y ¼ x1W1S>1 þ # # # þ xPWPS>P þ noise ð2Þ

where Wp is a neurons × rp matrix whose columns span an 
rp-dimensional encoding subspace for task variable xp, and Sp is a 
time × rp matrix of temporal profiles that describe the time course 
of population activity within this subspace (Supplementary Fig. 1).  
This model-based formalism represents a generalization of TDR1, 
which allows us to identify both the number of activity patterns 
used to encode different variables and the time courses with 
which these patterns are recruited (for details, see Methods and  
Supplementary Note 2).

Population coding of task variables in the PFC. To investigate 
population-level coding in the PFC, we applied mTDR to neural data 
recorded from an area in and around the frontal eye fields (FEFs) 
of two monkeys performing a context-dependent decision-making 
task1 (see Methods and ‘Experimental details’). In this task, mon-
keys were presented with a visual stimulus that contained colored, 
moving dots on each trial (Fig. 1a). A context cue (yellow square 
or blue cross) appeared before each trial and instructed the mon-
keys to attend to either the color (red versus green) or the motion 
(left versus right) of the dots. In the color context, the animal had 
to attend to color and ignore motion, making a saccade to the red 
(green) target if most of the dots were red (green). In the motion 
context, the animal had to attend to motion and ignore color (eg, 
making a left (right) saccade if the dot motion was left (right)). Task 
difficulty was controlled by varying the fraction of red versus green 
(and coherently moving) dots, across six levels of coherence for each 
stimulus dimension (Fig. 1b). After a randomized delay, the mon-
key was cued to indicate its decision by making a saccade to one of 
the two targets.

Classical approaches to analyzing data of this type involve analyz-
ing average firing rates, or peristimulus time histograms (PSTHs), 
for different task conditions (conditional PSTHs), such as ‘all tri-
als with the strong rightward motion and a rightward choice’. For 
this data set, the conditional PSTHs of individual neurons exhib-
ited heterogeneous tuning to the different task variables1 (Fig. 1c). 
This hetereogeneity, and the fact that each neuron encodes several 
task variables, makes it difficult to obtain a clear picture of the 
population-level representation of task variables.

To overcome these limitations, we used mTDR to determine the 
dimensionality of population-level representations of the task vari-
ables. We included a regressor for each of six task variables: color 
strength, motion strength, context and choice, as well as two addi-
tional terms for the absolute values of color and motion strength. 
Absolute value terms were included because of the observation 
that some neurons displayed nonlinear encoding of stimuli, consis-
tent with observations of nonlinear mixed selectivity13. The model 
also included a term for the condition-independent firing rate, 
which reflects temporal modulation not due to the task variables 
(for details, see Methods). To determine the dimensionality of the 
encoding of each task variable, we used a greedy step-wise selec-
tion method based on the Akaike information criterion21 (AIC) that 
added dimensions based on their contribution to the model pre-
diction performance22. We validated this approach with simulation 
experiments and with cross-validation on the real data, which we 
found to slightly underestimate dimensionality owing to the need to 
divide data into training and test sets (Fig. 3c).

We found that population-level representations of all task vari-
ables were at least 2D, and at least 3D in monkey A (Fig. 3 and 
Supplementary Table 1). Fig. 3a shows the task variable-specific 
components revealed by mTDR for an example neuron. The first 
three columns show the time course of this neuron’s activity within 

the first three dimensions of the corresponding variable’s encoding 
space. The time courses represent the columns of the temporal com-
ponent matrices Sp, scaled by the levels of each of the task variables 
xp (Equation 2). Thus, each trace represents the inferred contribu-
tion of each dimension to the neuron’s PSTH from the different set-
tings of the associated task variable. The rightmost column of Fig. 3a  
shows the model-based estimate of the neuron’s net time-varying 
response to each task variable. Summing these responses gives the 
model-based reconstruction of the neuron’s PSTH for each task 
condition; this matches the neuron’s true PSTH to high accuracy 
(bottom). Because each neuron weights these components differ-
ently, the fitted model can account for a wide variety of conditional 
PSTHs (Fig. 3b). Note that the data were not temporally smoothed, 
and no smoothness constraints were included in the model, indicat-
ing that the smoothness of the time courses is a property of the data.

To examine whether the model was flexible enough to cap-
ture the diverse response profiles observed across the population, 
we calculated the R2 of the conditional PSTH for each condition 
using held-out data. We found that the R2 of PSTH reconstructions 
increased with firing rate, with some neurons achieving R2 greater 
than 0.9 (Fig. 3d). The dependence of R2 on firing rate likely reflects 
higher signal-to-noise ratio in higher firing rate neurons.

We also measured how much of the variance from held-out 
trials could be explained by each of the learned subspaces alone 
(Fig. 3e). We defined each subspace by a set of orthonormal vec-
tors ordered by the amount of variance explained (for details, see 
Methods and Supplementary Note 4.1). We found that all dimen-
sions contributed to the variance of at least some neurons but that 
different neurons had their variance distributed differently across 
components. For example, for the decomposition in Fig. 3a, dimen-
sion three of the abs(motion) axis contributes more than dimen-
sion one despite the first dimension describing most of the variance 
across the population. These findings verify that the mTDR model 
captures high-variance dimensions and that the model describes a 
large fraction of the variance of the PSTHs for most neurons, despite 
the model being relatively low dimensional.

State-space trajectories reveal dynamic encoding. To explore the 
dynamics of population-level encoding during decision formation, 
we examined projections of neural activity from held-out trials onto 
the estimated subspaces (Fig. 4a–d, Extended Data Fig. 1, Extended 
Data Fig. 3 and Supplementary Videos). In contrast to previous find-
ings1,8, we found that the encoding of the stimulus variables (motion 
and color) was not transient but persisted throughout the recording 
epoch. Projections of population activity onto a single motion or 
color axis identified with classic TDR suggested that sensory axis 
projections decay rapidly after stimulus onset1. However, mTDR 
revealed that stimulus information persists by rotating within mul-
tidimensional motion and color subspaces (Fig. 4a,b).

More generally, we observed that, for nearly all subspaces, the 
neural trajectories on nearly all task conditions initially moved 
outward along a single axis and then began rotating in a consistent 
direction (Fig. 4a–d). This observation prompted us to identify the 
precise orientation of this initial axis and when, or if, the trajectories 
curved into a second dimension. We, therefore, sought a procedure 
that would identify an orthogonal set of axes ordered by the times 
at which population activity first projects onto them. The result-
ing method, which we call ‘sequential principal component analysis’ 
(seqPCA), identifies the direction the trajectories are moving and 
the time at which a change in direction occurs (see Methods and 
Supplementary Note 9). We used seqPCA to obtain an interpretable 
set of axes for the subspaces identified by mTDR.

Using seqPCA, we identified a orthonormal basis for each sub-
space, with axes that we labeled as ‘early,’ ‘middle’ and ‘late’, based  
on the times at which they became active during the task period  
(Fig. 4a–d). By definition, the early axis accounted for most of the 
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variance in neural trajectories during the time period immediately 
after stimulus onset. Variance that was not described by the early 
axis but emerges sometime after stimulus onset is captured by the 

middle axis. The late axis accounts for activity that is not accounted 
for by the early and middle axes but is present as the epoch transi-
tions from the stimulus presentation to the delay period. Projections 
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neuron’s response to each task variable. The responses for each task variable are then added together to give the model reconstructed ‘model PSTHs’. 
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is slightly smaller than estimated using all data but is tightly distributed around a single estimate. d, R2 of the model reconstructions for the PSTHs as a 
function of mean firing rate for each neuron. e, Percent variance explained for PSTHs of each neuron (n = 762) by projection onto each subspace dimension. 
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have been averaged for each neuron over four cross-validation folds. Colors in the title text for a and b correspond to colors of markers in Fig. 5.

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


ARTICLESNATURE NEUROSCIENCE

onto the seqPCA axes show clear times at which task variable infor-
ma tion becomes available onto each axis (right-side panels in  
Fig. 4a–d). For all subspaces, we found that the early epoch is charac-
terized by loading of the projections almost exclusively onto a single  
axis. In contrast, the middle and late epochs were 2D or higher.

We found that the transience of the early stimulus axes resembles 
that of the stimulus encodings using the TDR method1. Indeed, we 
found that our early axis was well correlated with the TDR axes (see 
Supplementary Note 10). It is, therefore, apparent that the middle and 
late seqPCA axes permit the stimulus information to persist. We com-
pared projections onto the subspaces learned by mTDR with the 1D 
axes of TDR (see Supplementary Note 10) and found that, whereas 
stimulus information appeared transient for TDR, the mTDR pro-
jections were both larger and more persistent (Fig. 4e and Extended 
Data Fig. 4). Finally, the population-level representation of choice, 
context, abs(motion) and abs(color) also exhibited multidimensional 
structure (Fig. 4c,d and Extended Data Fig. 1). We describe this struc-
ture and discuss its consequences in subsequent sections.

Trajectories exhibit rotational dynamics. The projections of neural 
population activity onto motion, color, choice and context exhibited 
rotations after early-axis activity reached a peak and middle-axis 
activity began to increase (Fig. 4a–d). This observation is sup-
ported by the fact that the trajectories are ≥2 dimensional during 
this period (Fig. 4a–d, right panels). Although rotations are inher-
ently ≥2 dimensional, the fact that we found trajectories to be ≥2 
dimensional need not imply rotations. We, therefore, identified the 
plane of greatest rotation of the trajectories using jPCA18 (Extended 
Data Figs. 2 and 6) and observed clear rotational structure. The 
two dimensions of the jPCA plane accounted for a relatively large 
amount of the variance for all task variables (Supplementary Fig. 1).  
Condition-shuffled projections yielded no apparent sequential or 
rotational structure (Supplementary Note 5 and Supplementary 
Figs. 2 and 3).

To rigorously examine the presence of rotational dynamics, we 
examined the angle of rotation that the trajectories traversed from 
the beginning of the middle epoch to the end of stimulus viewing 
(Fig. 4f). We reasoned that, for trajectories to be consistent with 
rotational dynamics, they would have to have monotonically chang-
ing angles of rotation. We compared the angle of rotation to samples 
from the null distribution corresponding to the maximum entropy 
distribution with the same second-order moments as the data23  
(Fig. 4f; for details, see Supplementary Note 5). We found evidence 

for rotational dynamics in motion, color, choice and context sub-
spaces, although rotations were less consistent with the trajectories 
of the color encoding for monkey F (Extended Data Figs. 3 and 6). 
These results indicate that rotational dynamics are not trivially pres-
ent in these data and that we observed them in most of the linear 
subspaces examined.

Projections onto the subspaces for the absolute values of motion 
and color (abs(motion) and abs(color)) were qualitatively different 
from those of the linear terms (Extended Data Fig. 1). Although 
they clearly encoded the absolute values of the stimuli, evidence for 
rotational dynamics was not significant (Fig. 4f and Extended Data 
Figs. 1 and 2).

Characterizing neural selectivity across subspaces. We used the 
mTDR model and seqPCA to examine the how tuning properties 
of these cells changed over time and the relationships in tuning 
between cells. Individual neurons exhibited complex mixtures of 
early, middle and late responses (Fig. 5a). Although the population 
tuning of some task variables (abs(motion) and abs(color)) were 
dominated by the early response, none of the task variables was 
found to display clustering but a continuous distribution of tuning 
across all three seqPCA axes. Late axes tended to explain less of the 
population variance, especially for color, choice and abs(motion), 
but were responsible for explaining most of the variance for at least 
some neurons. This is evident from the dirth of units in the ‘late’ 
vertices of Fig. 5a.

Also notable was the low density of cells near the early/late axis 
(that is, the left arm of the ternary plots in Fig. 5a). A low density 
of cells near the early/late edge of the plot indicates that there are 
few cells that encode a task variable at the beginning and end of 
stimulus viewing but lose sensitivity to a task variable in the middle 
of stimulus viewing. The lack of cells with a gap in the timing of 
encoding implies that individual cells tend to encode task variables 
in continuous epochs, even if only transiently.

The subspaces identified by mTDR for motion, color and choice 
were positively correlated (Fig. 5b,c). More specifically, the weights 
defining the motion and color bases were correlated with the choice 
weights but not with one another, indicating that motion and color 
representations both contributed to the choice encoding but that 
there was little cross-stimulus interference between representations.

Accurate stimulus decoding coincided with the onset of rota-
tional dynamics. The mTDR model provides a framework for 

Fig. 4 | Projections of population PSTHs onto latent encoding subspaces. Projections onto the first, second and third principal axes of the (a) motion, (b) 
color, (c) choice and (d) context subspaces. Projections of population PSTHs onto latent encoding subspaces. Motion, color and context subspaces have 
been orthogonalized with respect to the first dimension of the choice subspace. The choice subspace has been orthogonalized with respect to the context 
subspace. The context subspace has also been orthogonalized with respect to the motion and color subspaces. Details of orthogonalization are presented 
in Supplementary Math Note 4.2. Color conventions are the same as those described in Fig. 1. Red dots indicate the origin. Projected PSTHs made from 
held-out data not used during parameter estimation. a, Projections of PSTHs onto the motion subspace, sorted by motion coherence and averaged 
over color coherence for trials where the motion stimulus was the active context. b, Projections onto the color subspace sorted by color coherence and 
averaged over motion coherence for trials where the color stimulus was the active context. c, Projections onto the choice subspace. Motion-context 
trials are displayed with the same sorting and color conventions as displayed in a. Color-context trials are displayed with the same sorting and color 
conventions as displayed in b. Only correct trials are displayed. d, Projections onto the context subspace using the same conventions as displayed in c. 
Only correct trials are displayed. Colored axes in 3D plots indicate seqPCA axes. Solid vertical lines accompanying time traces indicate the time points 
where middle-axis variance starts to increase. Dashed vertical lines indicate the time points where late-axis variance starts to increase. Units of the 
ordinate are arbitrary, but all time-trace axes are on the same scale. PSTHs were generated with ~13-ms time bins and smoothed with a Gaussian window 
with s.d. of ~50 ms. e, Median encoding strength of pseudo-trials onto the first three encoding axes of mTDR compared with the 1D subspace estimated 
by the max-norm method used by Mante et al.1 (for details, see Supplementary Math Note 10). For clarity, only trials with the strongest stimulus strengths 
are shown. Gray bars at y = 0 indicate time points when the mTDR projections had significantly stronger encoding across all stimulus levels than the 1D 
projections (left-tailed Wilcoxon signed-rank test; positive false discovery rate45 controlled at 0.01). Multidimensional mTDR projections are larger than 1D 
projections at nearly all times for all task variables. f, Rotation angle traversed through rotational projection using jPCA. The angle was calculated starting 
from the time when the projection transitions between the early and middle epochs. Coherent traversal across stimulus strengths that is consistent and 
monotonically increasing is an indication of rotation. Shaded areas are 95% confidence regions calculated using a maximum entropy method23 (n = 100 
samples) under the null hypothesis of no population structure other than the empirical means and covariances across time, neurons and task conditions.
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population decoding by maximum likelihood (see Supplementary 
Note 6). This framework allows our decoding analysis to be con-
sistent with the results of dimensionality reduction. We can, there-
fore, investigate how and when the features of the low-dimensional 
trajectories translate into putatively perceived stimuli and behavior 

and whether these features might be read out by downstream popu-
lations. Although decoding of task variables does not imply a causal 
role for the encoded variables in PFC function, decoding analysis 
can provide a clearer picture of the dynamics and fidelity of task 
variable encoding.
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For decoding analyses with monkey A, we used four-fold 
cross-validation in which the held-out trials were used to produce 
100 pseudo-samples (with replacement) for decoding (for mon-
key F, we used two-fold cross-validation with similar results). The 
resulting decoded values were averaged over pseudo-samples and 
cross-validation folds.

Stimuli could be accurately decoded within ≈ 150 ms of  
stimulus onset for the motion stimulus and within ≈ 200 ms for 
the color stimulus, roughly corresponding to the time of transition 
between the early and middle seqPCA axes (Fig. 6a). The values of 
the decoded stimuli were constant by the start of the middle epoch 
for both contexts, and the variance of the decoding decreased dra-
matically up to this time (Fig. 6b). Thus, the change in population 
dynamics (early-to-middle transition) within the stimulus subspace 
was consistent with decoding accuracy and stability. The decoded 
values are slightly biased toward zero in the irrelevant context, sug-
gesting some gating of information across contexts.

To examine the content of stimulus encoding, it is often informa-
tive to examine error trials. We, therefore, examined the decoded 
stimulus for error trials using the weakest stimulus strengths 
(dashed lines, Fig. 6c and Extended Data Fig. 7c). For these data, 
only the weakest stimulus strengths had enough error trials to pro-
vide reliable statistical analysis1. For monkey A, we found that the 
decoded stimulus values on error trials were similar to correct-trial 
decoding but were opposite in sign, suggesting that the origin of 
errors was (on average) an incorrect percept.

Choice decoding. To examine how the decision might have 
evolved over the course of stimulus viewing, we next studied how 
and when decision information became available in the PFC and 
the dynamics of choice encoding. Although we encoded stimuli as 
continuous-valued variables in our model, choice was encoded as 
binary. Therefore, we examined the log likelihood ratio (LLR) (for 
details, see Supplementary Math Note 6.3) over time of pseudo-trials 
sampled from held-out data between the likelihood of a preferred 
versus an anti-preferred choice (Fig. 7a).

The magnitude of the LLRs increased monotonically over time, 
indicating an increasing strength of the decision signal. However, 
the magnitude of the LLR did not differ strongly with respect to 
context, direction of decision, stimulus strength or whether the tri-
als were correct or error trials (dashed lines, Fig. 7a). By transform-
ing the LLRs into decision probabilities (Fig. 7b; see Supplementary 
Note 6.3), we could examine a moment-by-moment probability of 
the animal’s choice and estimate when the decisions were unequivo-
cal. We found that the choices could be discriminated with better  
than 95% accuracy as early as 300–350 ms after stimulus onset  
(Fig. 7b). This timing corresponded to the time of transition 
between the early and middle seqPCA axes for choice. Similar 
results were observed for monkey F (Extended Data Fig. 8). These 
results suggest that, on average, the animals had made their deci-
sions well before stimulus offset regardless of the stimulus coher-
ence and that decisions were coincident with a change in dynamics 
from linear to rotational within the choice subspace.
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Restricting the choice subspace to only the early, middle or late 
axes, the LLRs displayed the same invariance to choice, stimulus 
strength, context and correct/error trial identity as the full model. 
For both monkeys, the early axis provided most of the available 
information about the decision, and early axis decoding alone is 
nearly as accurate as the full model (Fig. 7d and Extended Data  
Fig. 8d). However, the middle and late axes also displayed informa-
tion about the choice later during stimulus viewing.

Because we can decode the animals’ decisions with the early axis 
alone, it would seem as though the middle and late axis information 
is redundant, and it is unclear what the purpose of these axes is. 
Similar multidimensional encoding of decision has been observed 
previously in the premotor cortex24.

Context decoding. We examined the context signal using the same 
LLR method as our analysis of choice (Extended Data Figs. 9a and 
10a). The context evidence did not differ strongly across decision, 
stimulus strength or whether the animal provided a correct or 
incorrect response. Transforming the LLRs into a probability of the 
perceived context (Extended Data Figs. 9b and 10b) showed that 
the correct context could be identified for both monkeys on most 
pseudo-trials from the first time point, which is consistent with 
the fact that the context cue was presented 650 ms before stimulus 
onset1. These patterns hold for LLRs of error pseudo-trials as well 
as for decoding restricted to only the early, middle or late subspaces 
(Extended Data Figs. 9c,d and 10c,d). These findings demonstrate 
that accurate context informaation wa available in the PFC for the 
vast majority of both correct and error trials, suggesting that confu-
sion about context was not a significant source of errors.

Discussion
Our analyses have shown that the PFC encodes individual task vari-
ables in distinct multidimensional subspaces that capture dynamic 
changes in representation over time. The population activity pat-
terns representing each task variable tended to exhibit a stereo-
typed 1D linear phase, followed by a rotational phase. Our ability to 
make these observations relied on a new method for dimensionality 
reduction based on a probabilistic low-rank model of the data.

We found that the dynamic nature of encodings in the PFC 
requires multiple dimensions of neural population activity for 
accurate characterization. In particular, only multidimensional 

encoding, as opposed to 1D encoding, captures the persistence of 
stimulus information in the PFC throughout the stimulus-viewing 
epoch (Fig. 4a,b). This finding complements the original report of 
these data1, suggesting that previously reported transient stimulus 
encoding in the PFC is consistent only with the early encoding axis 
(Fig. 4e). Although the mechanisms of selection and integration 
proposed in Mante et al.1 are consistent with the early evolution of 
trajectories revealed here, by themselves they cannot readily explain 
the following rotational dynamics. Our observations resemble mul-
tidimensional stimulus coding that mixes transient and persistent 
components24 as well as population code ‘morphing’16, where the 
optimal weights for decoding from population activity change over 
time, although the results shown here are on a time scale that is 
nearly an order of magnitude faster than previously reported.

Although we validated our method for identifying the ‘true’ 
dimensionality of the data using simulation experiments, it is unclear 
whether the dimensionality would differ under different experi-
mental conditions. Specifically, the dimensionalities we learned are 
likely to be influenced by a variety of factors25, including the sample 
size, the fraction of neurons observed, the intrinsic model dynam-
ics and the task complexity. Some of these factors might explain the 
differences in dimensionality between the two animals in the pres-
ent study, where the dimensionalities of monkey F were lower than 
monkey A in correspondence with smaller sample sizes and fewer 
recorded cells. However, we emphasize that, during the early encod-
ing, nearly all trajectories are 1D and only afterward are ≥2D. The 
fact that trajectories are multidimensional after the first transition 
might be a reflection of their rotational nature during this epoch. 
Rotations are inherently ≥2D because they require both sine and 
cosine parts for each axis of rotation.

The mTDR method is distinct from unsupervised dimension-
ality reduction methods such as PCA or factor analysis in that it 
uses information about the experimental variables of interest on 
each trial. The method is also distinct from previously proposed 
supervised methods1,26–29 in its use of an explicit generative model 
to describe the transformation from task variables to neural activity 
patterns. This distinction not only allows us to make predictions of 
population responses to experimental contingencies not observed 
in the data (something not possible for methods based on the con-
ditional PSTHs like dPCA without model-based interpolations27), 
but it also allows us to apply the tools of probabilistic modeling and 
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inference to estimate both the model parameters and the dimen-
sionality of the encoding.

Our approach (Equation 5) is similar to that used by Mante et al.1 
and to other methods based on linear regression models (see exam-
ples in refs. 30–33). However, our model is distinguished by its explicit 
specification of low-rank regression parameters and neuron-specific 
noise variances. Future improvements to our model may incorpo-
rate nonlinear mapping of stimuli to neuronal responses30, noise 
correlations between simultaneously recorded neurons and support 
for variable trial lengths.

Much theoretical development has rested on the notion that 
single-neuron spike rates map onto an evidence accumulator, but 
recent evidence in the FOF, a rodent analogue of the FEF, has chal-
lenged this view6, suggesting that this region can be better described 
as maintaining a running motor plan (saccade for FEF and orienting 
for FOF) based on the evidence accumulated6,7. Although our analy-
sis does not aim to suggest a causal role of FEF, the results of the 
present study could be interpreted as supporting this view, where 
the early dynamics represent an evolving decision and the rotational 
dynamics indicate an evolving motor plan, but more work is needed 
to determine the precise role of FEF, and PFC more generally.

Functional significance of sequential subspaces. Our analysis 
revealed temporally segregated dynamics with early-axis activity 
transitioning to middle and late axes, with rotations dominating at 
around 200–400 ms after stimulus onset (Fig. 4 and Extended Data 
Fig. 2). The temporal separation of the early/linear and rotational 
subspaces suggests that these are subspaces within which distinct 
computations are evolving18,20,34 or have independent sets of down-
stream targets19.

With the present data, we can only speculate about what the 
nature of these different computations must be, but the present anal-
ysis indicates the possibility that the early epochs are concomitant  

with the temporal window that decision-making is performed. For 
example, the timing of transition between early and middle epochs is 
consistent with the timing of accurate decoding of the animals’ deci-
sions from single pseudo-trials (Fig. 7 and Extended Data Fig. 8).  
This timeframe is consistent with the timing of saturation of the 
chronometric curve for the traditional kinematogram task35–37, with 
the distribution of step times in the stepping model of evidence 
accumulation38 and with early weighting of evidence in visual dis-
crimination tasks39. This evidence suggests that the transition from 
linear to rotational dynamics is a correlate of decision commitment.

A similar sequence of dynamics has been observed in popula-
tion activity from the premotor cortex that corresponds to distinct 
‘preparatory’ and ‘movement’ epochs18–20,34. However, in these stud-
ies, the transitions in dynamics could be linked directly to an overt 
action (arm movement), whereas our animals would not have made 
an overt action (saccade to target) until 300–1,500 ms after the end 
of our analysis window1. Therefore, if the animal has made its deci-
sion, then it would have done so only covertly.

These distinctions, however, might be superficial. The qualita-
tive features of our results reflect those in the motor cortex strik-
ingly well18–20,34, suggesting that common mechanisms might be at 
work in both motor execution and decision-making. Indeed, FEF is 
defined as a region that elicits eye movement under stimulation40,41  
and has been implicated as a region important for visual decision- 
making1,4,6,9–12,14,15, oculomotor planning42 and covert visuo spatial 
attention43,44. Thus, we may think of FEF as itself a premotor area 
responsible for visuospatial attention and motor planning associ-
ated with decision-making4,6,7,9. The dynamic transitions in our 
analysis could be interpreted as signaling decision commitment6, 
or as signaling a covert action (saccade preparation), in analogy 
with the transitions observed between preparatory and move-
ment periods seen in the premotor cortex18,19,34. Single-trial popu-
lation analysis and analysis of delay and saccade epochs of these  
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experiments might shed light on how the dynamics we observe 
reflect the animals’ decisions.

Some subspaces lacked a distinct late component (eg, color and 
choice subspaces for monkey A; Fig. 4a,c). However, it is possible 
that the middle seqPC for some task variables served a similar role 
as the late seqPC for others, preparing the network for a new set of 
targets or storing the memory of the stimuli as persistent activity 
over the course of the delay period. The number of seqPCs needed 
to describe the population activity might reflect the rate that trajec-
tories rotate into new encoding directions and therefore correspond 
to a quantitative rather than a qualitative difference in encoding. 
Future work should be aimed at identifying the significance of the 
dimensionality of the encoding relative to the sequential dynamics.

The nature of dynamic encoding for the context variable remains 
mysterious. Context encoding for both animals displayed clear and 
consistent dynamics (Fig. 4d and Extended Data Fig. 3d), includ-
ing rotations (Fig. 4f). Furthermore, although most of the predictive 
capacity of the context encoding lies in the early subspace (Extended 
Data Figs. 9 and 10), where context is encoded throughout the stim-
ulus viewing period, context encoding at the single-neuron level is 
broadly distributed across the early, middle and late axes (Fig. 5b 
and Extended Data Fig. 5), indicating that some neurons do not 
encode context until well after stimulus onset. Further work is 
needed to determine what, if any, function these dynamics serve in 
decision-making and memory. The uniqueness of these phenomena 
to the present setting is an active area of research.

Differences in encoding between animals. The two monkeys in 
this study displayed similar, but not identical, encoding proper-
ties. For example, the encodng trajectories for motion were similar 
(Fig. 4a and Extended Data 3a), but we found obvious differences 
between the encoding trajectories for color (Fig. 4b versus Extended 
Data Fig. 3b). For monkey A, the color trajectories closely resem-
bled the trajectories for motion (Fig. 4a,b), whereas, for monkey F, 
the color trajectories did not display obvious rotations (Extended 
Data Fig. 3b). Choice and context trajectories in monkey F appear 
to be similar to those of monkey A (Fig. 4e,g and Extended Data 
Fig. 3e,g) but displayed less pronounced rotations (Extended Data 
Figs. 2 and 6). These across-animal differences verify that rotational 
dynamics are not trivially present in these data, and, although it is 
unclear precisely what function they serve, they are a potentially 
important feature of encoding in the PFC.

Although the reason for differing dynamics between the color 
encoding for monkey F and the other stimulus encodings is unclear, 
we do have some behavioral clues as to its effect. For example, the 
color-context psychometric curve for monkey F was somewhat 
more shallow than for motion as well as for both motion and color 
for monkey A (Extended Data Fig. 2d in ref. 1), and motion served 
as more of a distraction during the color task for monkey F than for 
monkey A, suggesting that the color discrimination task was more 
difficult for monkey F. Furthermore, we found that the decoding 
accuracy for color in monkey F was worse than for monkey A (Fig. 6  
and Extended Data Fig. 7), suggesting that color information was 
more poorly represented in the PFC for monkey F. Although not 
definitive, together these results suggest that monkey F might have 
had more difficulty with color coherence perception and that indis-
tinct encoding features are a correlate of perceptual uncertainty. 
Future experiments could be aimed at examining this hypothesis.

Decoding of error trials suggests sources of errors. There are three 
ways that the animals might commit an error: the animal perceived 
the wrong stimulus (eg, perceived left motion on a right-motion 
trial); the animal was confused about the context (eg, made its deci-
sion using the color information in the motion context); or the ani-
mal made a random choice (that is, a ‘lapse’ trial). The results of this 
analysis for monkey A at the weakest stimulus strengths indicate 

that the animal perceived the wrong stimulus. The decoded context, 
on average, was the correct context (Extended Data Fig. 9), ruling 
out whether the animal was confused about which stimulus it was 
supposed to attend. Lapse errors are also unlikely to contribute sig-
nificantly to the animal’s behavior. The psycho-physical curves of 
monkey A suggest a small lapse rate, if any1, and stimulus decod-
ing indicates that the perceived relevant stimulus on error trials was 
of the opposite sign as the stimulus that was presented (Fig. 6c). 
Together, these observations indicate that most error trials are based 
on an incorrect perception of the relevant stimulus. A more direct 
trial-by-trial analysis of simultaneously recorded neurons would be 
useful in confirming this hypothesis.

The results for monkey F are more difficult to interpret. The 
decoded stimuli for error trials appear to be close to zero, indicating 
an ambiguous stimulus (Extended Data Fig. 7b). Furthermore, the 
choice signal on error trials appears to be present earlier, on average, 
than on correct trials and is present on some trials as early as the 
first time point (Extended Data Fig. 8b), suggesting that the animal 
might have made its decision before even viewing the stimulus and 
that lapses were a significant source of errors for monkey F.

Given the present data, it might be impossible to distinguish the 
neural correlates of decision-making from those of planning for 
the eventual saccade. Recent work has shown that there might be 
independent cortical signals for evidence accumulation and deci-
sion commitment in other cortical areas39. It might be unlikely, 
using these data, to distinguish between a deliberate effort to make 
a stimulus discrimination and the formation of a motor plan31.

Nevertheless, the results presented here demonstrate the utility 
of mTDR for the analysis of neuronal population data and provide 
a description of PFC dynamics that should serve as important con-
straints on future models of the mechanisms of PFC function.
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Methods
Detailed description of model. High-dimensional description of observations.  
Our model describes trial-by-trial neuronal activity with a linear regression with 
respect to the task variables. We assume that the activity of the ith neuron yi,k(t) at 
time t on trial k can be described by a linear combination of P task variables xðpÞk

I
,  

p = 1, …, P (eg, stimulus variables, behavioral outcomes and nonlinear 
combinations thereof), such that

yi;kðtÞ ¼ xð1Þk βi;1ðtÞ þ xð2Þk βi;2ðtÞ þ ¼ þ xðPÞk βi;PðtÞ þ ϵi;kðtÞ: ð3Þ

where the P values of the task variables xðpÞk
I

 are known, the βi,p(t) are unknown 
coefficients and ϵi,k(t) is noise. This basic model structure is identical to that 
of the regression model used in ref. 1 and has been successfully employed in 
characterizing neuronal activity of single neurons in other studies of perceptual 
decision-making46,47. In cases where we include a time-varying mean rate that 
is independent of the task variables, we define xðPÞk # 1

I
 for all k, and the Pth 

component becomes the time-varying mean.
To represent all neurons simultaneously, we concatenate the responses into a 

vector yk(t) and write

ykðtÞ ¼ xð1Þk β1ðtÞ þ xð2Þk β2ðtÞ þ ¼ þ xðPÞk βPðtÞ þ ϵkðtÞ; ð4Þ

where ykðtÞ ¼ ðy1;kðtÞ; ¼ ; yn;kðtÞÞ
>

I
, βpðtÞ ¼ ðβ1;pðtÞ; ¼ ; βn;pðtÞÞ

>

I
 and 

ϵkðtÞ ¼ ðϵ1;kðtÞ; ¼ ; ϵn;kðtÞÞ>
I

. For trial epochs of duration T, we can regard all 
observations on a given trial to be a matrix, Yk = (yk(1), …, yk(T)), giving the 
observation model

Yk ¼ xð1Þk B1 þ xð2Þk B2 þ ¼ þ xðPÞk BP þ Ek; ð5Þ

where Ek = (ϵk(1), …, ϵk(T)) and Bp = (βp(1), …, βp(T)). For the present study, we 
assume the noise is normally distributed ϵkðtÞ # N ð0;D$1Þ

I
 for all trials k and 

times t, where D = diag(λ1, …, λn) is a n × n diagonal matrix of noise precisions.

Low-dimensional description of observations. With no additional constraints, our 
observation model (Fig. 5) is extremely high dimensional and is effectively a 
separate linear regression for each neuron at every time point. This would only 
be a sensible model if we thought that neurons were not, in fact, coordinating 
activity between each other or across time. To define our low-dimensional model, 
we can describe each Bp by a low-rank factorization, that is, Bp = WpSp, where 
Wp and Sp are n × rp and rp × T, respectively, where rp = rank(Bp). Equivalently, 
we can say that rp is the dimensionality of the encoding of task variable p. This 
is equivalent to saying that the characteristic response of each neuron to the 
pth task variable can be expressed as a linear combination of rp weighted basis 
functions βpi ðtÞ ¼

Prp
j¼1 w

ðpÞ
i;j s

ðpÞ
j ðtÞ

I
, where rp is the dimensionality of the encoding, 

fsðpÞj ðtÞg
rp

j¼1

I

 are a common set of time-varying basis functions and fwðpÞ
i;j g

rp

j¼1

I

 are 
neuron-dependent mixing weights.

The mTDR model does not impose any orthogonality between task variables 
or task variable subspaces. This permits accurate recovery of subspaces even when 
the encoding dimensions are correlated, which can result in correlations between 
task variable representations, as we demonstrate in Supplementary Note 8. It is 
desirable, therefore, to be able to visualize the part of the encoding of each task 
variable that is unmixed. We, therefore, orthogonalize the subspaces with respect to 
correlated subspaces for visualization in Fig. 4.

Marginal estimation of model parameters. The goal of inference is to estimate the 
factors of Bp and the ranks rp. Our proposed estimation strategy, for computational 
and statistical efficiency, is to estimate only one set of factors ({Wp} or {Sp}). This is 
possible when we integrate out one set of factors. For example, if we define a prior 
probability density over the mixing weights p(W), then, for data likelihood p(Y∣W, 
S), the marginal likelihood of the matrix of time-varying basis functions S can be 
obtained by

pðYjS; λÞ ¼
Z 1

$1
pðYjW; S; λÞpðWÞdW: ð6Þ

In principle, either set of factors may be selected for marginalization. In practice, 
however, the set of factors with lowest dimension should be selected to keep 
computational costs low. In this paper, we focus on the case where T ≪ n, and we, 
therefore, will estimate the set of weights {Sp} while integrating over {Wp}. The fact 
that either set of factors may be determined in this way means that there is a duality 
between rows and columns imposed by this model that is similar, in principle, to 
the duality between factors and latent states for probabilistic PCA48.

If we let the noise distribution and prior distribution of W both be Gaussian, 
then we can use standard Gaussian identities to derive the marginal density 
p(Y∣S, λ) and the corresponding posterior density p(W∣Y, S, λ). A simple 
starting assumption would be to let all elements of W be independent standard 
normal (that is, vecðWÞ # N ð0; I~rnÞ

I
 where ~r ¼

P
p rank ðBpÞ

I
). We, therefore, 

assume that the weights are a priori independent and that the noise variance is 
independent across both neurons and time. In principle, our framework supports 

the application of more structured priors and noise covariances, but we will not 
explore more elaborate models in this paper. Further details are developed in 
Supplementary Math Note 2.

Experimental details. A detailed description of these data has been published 
previously1. Briefly, two adult male rhesus monkeys were trained to perform a 
context-dependent, two-alternative, forced-choice visual discrimination task. At 
the beginning of each trial, the monkeys were cued (Fig. 1a) to respond to either 
the motion or the color parts of the stimulus. After the context-cue presentation, 
two targets appear for 350 ms, followed by a 750-ms presentation of the stimulus. 
The stimulus was then followed by a randomized 300–1,500-ms delay, after which 
the monkey was cued to indicate its decision with a saccade to either of the two 
targets. The position of red and green targets was randomized on each trial.

Electrophysiological data were recorded from tungsten electrodes implanted in 
the arcuate sulcus in and around the FEF. Electrodes were lowered two at a time into 
adjacent grid holes and were advanced until at least one single unit could be isolated, 
although some trials yielded multi-unit activity. Data were recorded using the 
Multichannel Acquisition Processor Data Acquisition System (Plexon). All recorded 
units were included in the analysis. Spike sorting was conducted by clustering 
based on PCA using the Plexon Offline Sorter (Plexon). Each isolated cluster was 
functionally treated as a unit. Some clusters did not correspond to well-discriminated, 
single-unit activity and were therefore deemed multi-unit activity.

All analyses presented in this paper used spike counts binned at 50 ms  
(for model fitting and decoding) or 12.5 ms (for display of projections, jPCA and 
PSTHs). Analysis windows for both monkeys started 100 ms after stimulus onset 
and continued for 100 ms after stimulus onset1. Color coherence was transformed 
into position evidence based on the location of the red and green target. All data 
were analyzed with custom scripts written in MATLAB (MathWorks).

Model structure. Inclusion of linear terms for color, motion, choice and context 
were substantiated by previous work1. Examination of the PSTHs revealed that 
stimulus encoding was asymmetric (eg, unit 2 in Fig. 1c), such that the encoding of 
the stimulus strength was stronger in one direction than the other. This suggested 
that the absolute value of the stimulus strengths should be jointly modeled with the 
linear encoding of the stimuli. Model fits using terms for the absolute value of the 
stimuli resulted in smaller AIC than model fits with only linear terms (monkey  
A: AIClinear = 9.79 × 107, AICabs = 7.33 × 107; monkey F: AIClinear = 8.065 × 107, 
AICabs = 8.0628 × 107).

In general, we suggest that investigators proceed with task variable inclusion in 
the same way that one would when performing traditional linear regression. This 
process should include careful consideration of the phenomenology of encoding 
in the population that they are studying and principled model selection metrics. 
For large numbers of putative task variables, investigators should consider model 
selection via sparse priors on regression coefficients.

Cross-validated variance explained. To assess the variance in the population 
responses that is explained by our method, we conducted four-fold cross-validation 
where, on each fold of cross-validation, we used a randomly selected sample of 
75% of the trials as training data to estimate the parameters of the model. Using 
the remaining 25% of the trials as test data, we made PSTHs for every possible 
task variable contingency for correct trials (total of 144 conditions). The reported 
variance explained was averaged over the four cross-validation folds.

When assessing variance explained, the population PSTHs for each condition 
was averaged over all extraneous task variables. For example, to assess the variance 
explained by the motion subspaces, we averaged the PSTHs over all task variables 
except motion. We, therefore, had six sets of PSTHs for each neuron that was 
projected onto the motion subspace.

To determine if the variance that was explained by the estimated subspaces 
was greater than chance, we compared the observed variance explained to the 
distribution of variance explained obtained by random projections. As a serrogate 
null distribution, we generated 500 samples for each task variable of random 
projection weights from a normal distribution and calculated the explained 
variance for each sample. We then asked what the probability was of the observed 
explained variance being larger than the explained variance of the random 
projections for each neuron. We found that many neurons exceeded the 95% 
Bonferroni-corrected significance threshold across nearly all dimensions.

seqPCA. The seqPCA algorithm identifies an orthogonal basis on which variance 
of a D-dimensional trajectory is sequentially explained. The algorithm starts by 
calculating the variance explained by the first singular vector of a sequence of D × t 
data matrices Yt, where t indicates the number of time points included in the data. 
As the number of data points increases, the first singular vector explains a larger 
proportion of the variance, p1,t, until trajectories change direction, after which p1,t 
decreases. The t at which p1,t reaches its peak is considered a transition time, and the 
left singular vector at this time is considered the first seqPC. Variability explained 
by this axis is subtracted from the data, and the procedure is repeated to identify the 
second seqPC and so on. For details, see Supplementary Math Note 9.

The seqPCA algorithm displays some sensitivity to noise by making peaks in p1,t 
difficult to identify. However, moderate smoothing (Gaussian window, 50-ms width) 
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of the trajectories appeared to mitigate this effect. Greater robustness might be 
offered by translation of this algorithm into an optimization framework49. A related 
method has been developed for identification of sequential motifs of spike rasters50.

Statistics. No statistical methods were used to predetermine sample sizes, but our 
sample sizes are similar to those reported in previous publications1. Data collection 
and analysis were not performed blinded to the conditions of the experiments.

Tests for rotational dynamics by the method of Elsayed and Cunningham23 
depend on the distribution coming from a special form of tensor-variate 
normal distribution that corresponds to the maximum entropy distribution for 
tensor-valued data with independent tensor dimensions. Data distribution was 
assumed to be normal, but this was not formally tested.

Significance of the magnitude of inner products (Fig. 5 and Extended Data 
Fig. 5) was determined by a null distribution based on the positive half-Gaussian 
with zero mean and s.d. σ0 = 1/n, where n is the number of neurons (n = 762 
for monkey A and n = 640 for monkey F), and controlled by the positive false 
discovery rate45. We conducted the same procedure using standard deviations from 
bootstrap samples but found that the asymptotic formula (σ0 = 1/n) was slightly 
more conservative as the σ0 was a few percent larger. The null distribution was used 
following Kobak et al.27 and validated by the one-sample Kolmogorov–Smirnov test 
with 1,000 permutations of the weight indices as samples from the surrogate null 
distribution (P = 0.78 and Dn = 0.0207).

Permutation tests for canonical correlations (Supplementary Math Note Fig. 3) 
were performed with 200 uniformly randomized permutations.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data are available for download at https://www.ini.uzh.ch/en/research/groups/
mante/data.html.

Code availability
Demo code for the mTDR method is available for MATLAB at http://www.
mikioaoi.com/samplecode/RDRdemo.zip
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Extended Data Fig. 1 | Projections of population PSTH’s onto the first, second, and third PC-axes for monkey A. a, The abs(motion) and b, abs(color) 
subspaces. Subspaces have been orthogonalized with respect to the first dimension of the choice subspace. The monkey gave the correct response for all 
trials used. Colored axes indicate dominant axes in the early, middle, and late periods of the stimulus epoch, as determined by the methods described in 
Supplementary section 9. Purple vertical lines indicate transition from the early to middle epochs. Yellow vertical lines indicate transition from the middle to 
late epochs as in Figure Figure 4. Plotting colors are the same as those in Figure 4. Units of the ordinate are arbitrary but all axes are on the same scale.

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


ARTICLESNATURE NEUROSCIENCE

Extended Data Fig. 2 | Projections of population PSTH’s onto jPCA axes for monkey A. Projections are onto the first two jPCA axes identified by the 
trajectories shown in Figure 4. The jPCA axes reveal strongly rotational dynamics for motion, color, choice, and context subspaces.
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Extended Data Fig. 3 | Projections of population PSTH’s for monkey F onto the first, second, and third PC-axes of all task variables subspaces. Plotting 
conventions and analyses are the same as those for Figure 4. Projected data is averaged over 2-folds of cross validated projections where a random 
sampling of half of the data was used to estimate parameters and the remaining half used to make projections.
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Extended Data Fig. 4 | Encoding strength of population pseudosamples for monkey F onto the first three axes of all task variables subspaces. Plotting 
conventions and analyses are the same as those for Figure 4. Projected data is averaged over 2-folds of cross validated projections where pseudosamples 
were drawn from held-out trials. Grey bars at y = 0 indicate time points where the mTDR projections had significantly stronger encoding across all stimulus 
levels than the 1D projections (left-tailed Wilcoxon signed-rank test, pFDR45 controlled at .01).
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Extended Data Fig. 5 | Distribution of variance among seqPCA axes. Monkey F. Plotting conventions are the same as for Figure 5. a, Proportion of 
variance among seqPCA axes. Each marker corresponds to one neuron. The position of each neuron indicates the distribution of variance from PSTHs 
across corresponding early, middle, and late axes. e.g. a point that lies closer to the ‘early’ vertex of the motion plot has more of its motion-specific 
variance explained by the early axis while a point in the middle of the simplex has variance equally distributed across all axes. Darker regions indicate 
higher density of points. Colored dots correspond to cells displayed in Figure 3. b, Weights of the top (in terms of variance explained) 3 axes for all cells 
for motion, color, and choice subspaces. Cell indexes are sorted according to the choice weights from most positive to most negative. c, Magnitude of the 
Pearson correlation between top 3 subspace axes. The magnitude is used because the axes are only identifiable up to a sign. Markers indicate significant 
correlations controlled by the positive false discovery rate45)(* Q < .01, +Q < .01). Null distribution is based on the positive half-Gaussian with zero-mean 
and standard deviation σ0 = 1/n, where n = 640 is the number of neurons. Significant correlations are most consistent between color-choice and 
motion-choice pairs.
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Extended Data Fig. 6 | Rotational dynamics of subspace projections for Monkey F. a, Projections of population PSTH’s for monkey F onto the jPC-axes of 
all task variables subspaces. Plotting conventions and analyses are the same as those for Figure 4. Projected data is averaged over 2-folds of cross validated 
pro- jections where a random sampling of half of the data was used to estimate parameters and the remaining half used to make projections. b, Angle of 
rotation over time for low-D trajectories of monkey F. Rotation angle tra- versed through rotational projection using jPCA. Angle was calculated starting 
from time when the projection transitions between the early and middle epochs. Coherent traversal across stimulus strengths that is con- sistent and 
monotonically increasing is an indication of rotation. Shaded areas are 95% confidence regions calculated using a maximum entropy method 23 (n = 100 
samples) under the null hypothesis of no population structure other than the empirical means and covariances across time, neurons, and task conditions.
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Extended Data Fig. 7 | Instantaneous decoding of stimulus for monkey F. Plotting conventions and analyses are the same as for Figure 6 a, Top: Decoded 
motion coherence by mTDR model in both contexts. Bottom: Mean squared error (MSE) over time of motion coherence decoding across stimulus 
levels and context. MSE decreases precipitously, and then stabilize around the time of the first transition. b, Same as a) for color coherence decoding. 
Shaded regions indicate 50% confidence intervals. Dashed lines indicate error trials from the corresponding context for the lowest stimulus strengths. 
100 pseudotrials for each of 2-fold cross validation used for each analysis. Solid vertical lines indicate the time of early/middle axis transition for the 
corresponding stimulus subspace projections. Dashed vertical lines indicate the time of middle/late transition.
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Extended Data Fig. 8 | Instantaneous decoding of decision for monkey F. Plotting conventions and analyses are the same as for Figure 6 a, Log-likelihood 
ratios (LLRs) in favor of a preferred choice using single pseu- dotrials from color - context (gold-blue, sorted by color coherence) and motion - context 
(red-violet, sorted by motion coherence) trials. Shaded regions indicate 95% quantile intervals for each stimulus strength. Solid lines indicate the median 
of correct trials. Dashed lines indicate median of error trials. b, Probability of a preferred choice based on corresponding LLRs combined over all stimulus 
strengths (see section 6.3 for details). Solid lines indicate median of correct trials. Dashed lines indicate median of error trials. Shaded regions indicate 
quantile coverage intervals of correct trials (light-to-dark: 95%,75%,50%). 100 pseudotrials for each of 2-fold cross validation folds used for all analyses. 
c, LLRs for in favor of a preferred choice where the choice subspace has been restricted to only the early, middle, or late axes. d, Probability of a preferred 
choice based on LLRs from (c).
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Extended Data Fig. 9 | Instantaneous decoding of context for monkey A. a, LLRs for monkey A in favor of the motion context using single pseudotrials, 
sorted by color coherence. Shaded regions indicate 95% quantile intervals for each stimulus strength. Solid lines indicate the median over correct trials. 
Dashed lines indicate median of error trials. b, Probability of the motion context based on corresponding LLRs combined over all stimulus strengths. Solid 
lines indicate median of correct trials. Dashed lines indicate median of error trials. Shaded regions indicate quantile intervals of correct trials (light-to-dark: 
50%, 75%, 95%). Color conventions are the same as in Figure 4. 100 pseudotrials for each of 4-fold cross validation folds used for all analyses.
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Extended Data Fig. 10 | Instantaneous decoding of context for monkey F. Plotting conventions are the same as in Extended Data 9. 100 pseudotrials for 
each of 2-fold cross validation folds used for all analyses.
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