
ARTICLE Communicated by Emery Brown

Efficient Markov Chain Monte Carlo Methods
for Decoding Neural Spike Trains

Yashar Ahmadian
yashar@stat.columbia.edu
Department of Statistics and Center for Theoretical Neuroscience,
Columbia University, New York, New York 10027, U.S.A.

Jonathan W. Pillow
pillow@mail.utexas.edu
Center for Perceptual Systems, University of Texas at Austin, Austin,
TX 78751, U.S.A.

Liam Paninski
liam@stat.columbia.edu
Department of Statistics and Center for Theoretical Neuroscience,
Columbia University, New York, New York 10027, U.S.A.

Stimulus reconstruction or decoding methods provide an important tool
for understanding how sensory and motor information is represented
in neural activity. We discuss Bayesian decoding methods based on an
encoding generalized linear model (GLM) that accurately describes how
stimuli are transformed into the spike trains of a group of neurons. The
form of the GLM likelihood ensures that the posterior distribution over
the stimuli that caused an observed set of spike trains is log concave so
long as the prior is. This allows the maximum a posteriori (MAP) stimulus
estimate to be obtained using efficient optimization algorithms. Unfortu-
nately, the MAP estimate can have a relatively large average error when
the posterior is highly nongaussian. Here we compare several Markov
chain Monte Carlo (MCMC) algorithms that allow for the calculation
of general Bayesian estimators involving posterior expectations (condi-
tional on model parameters). An efficient version of the hybrid Monte
Carlo (HMC) algorithm was significantly superior to other MCMC meth-
ods for gaussian priors. When the prior distribution has sharp edges and
corners, on the other hand, the “hit-and-run” algorithm performed bet-
ter than other MCMC methods. Using these algorithms, we show that for
this latter class of priors, the posterior mean estimate can have a consider-
ably lower average error than MAP, whereas for gaussian priors, the two
estimators have roughly equal efficiency. We also address the application
of MCMC methods for extracting nonmarginal properties of the poste-
rior distribution. For example, by using MCMC to calculate the mutual
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information between the stimulus and response, we verify the validity
of a computationally efficient Laplace approximation to this quantity for
gaussian priors in a wide range of model parameters; this makes direct
model-based computation of the mutual information tractable even in
the case of large observed neural populations, where methods based on
binning the spike train fail. Finally, we consider the effect of uncertainty
in the GLM parameters on the posterior estimators.

1 Introduction

Understanding the exact nature of the neural code is a central goal of
theoretical neuroscience. Neural decoding provides an important method
for comparing the fidelity and robustness of different codes (Rieke, Warland,
de Ruyter van Steveninck, & Bialek, 1997). The decoding problem, in its
general form, is the problem of estimating the relevant stimulus, x, that
elicited the observed spike trains, r , of a population of neurons over a
course of time. Neural decoding is also of crucial importance in the design
of neural prosthetic devices (Donoghue, 2002).

A large literature exists on developing and applying different decoding
methods to spike train data, in both single cell and population decoding.
Bayesian methods lie at the basis of a major group of these decoding algo-
rithms (Sanger, 1994; Zhang, Ginzburg, McNaughton, & Sejnowski, 1998;
Brown, Frank, Tang, Quirk, & Wilson, 1998; Maynard et al., 1999; Stanley &
Boloori, 2001; Shoham et al., 2005; Barbieri et al., 2004; Wu et al., 2004; Brock-
well, Rojas, & Kass, 2004; Kelly & Lee, 2004; Karmeier, Krapp, & Egelhaaf,
2005; Truccolo, Eden, Fellows, Donoghue, & Brown, 2005; Jacobs, Grzywacz,
& Nirenberg, 2006; Yu et al., 2009; Gerwinn, Macke, & Bethge, 2009; see also
the companion article in this issue: J. Pillow, Y. Ahmadian, & L. Paninski,
“Model-based decoding, information estimation, and change-point detec-
tion in multineuron spike trains,” referred to hereafter as the companion
article, Pillow et al., 2011). In such methods, the a priori distribution of
the sensory signal, p(x), is combined, via Bayes’ rule, with an encoding
model describing the probability, p(r | x), of different spike trains given the
signal, to yield the posterior distribution, p(x | r), that carries all the infor-
mation contained in the observed spike train responses about the stimulus.
A Bayesian estimate is one that, given a definite cost function on the amount
of error, minimizes the expected error cost under the posterior distribution.
Assuming the prior distribution and the encoding model are appropriately
chosen, the Bayes estimate is thus optimal by construction. Furthermore,
since the Bayesian approach yields a distribution over the possible stimuli
that could lead to the observed response, Bayes estimates naturally come
equipped with measures of their reliability or posterior uncertainty.

In a fully Bayesian approach, one has to be able to evaluate
any desired functional of the high-dimensional posterior distribution.
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Unfortunately, calculating these can be computationally very expensive.
For example, most Bayesian estimates involve integrations over the (often
very high-dimensional) space of possible signals. Accordingly, most work
on Bayesian decoding of spike trains has focused on cases where the signal
is low dimensional (Sanger, 1994; Maynard et al., 1999; Abbott & Dayan,
1999; Karmeier et al., 2005) or on situations where the joint distribution,
p(x, r), has a certain Markov tree decomposition, so that computationally
efficient recursive techniques may be applied (Zhang et al., 1998; Brown
et al., 1998; Barbieri et al., 2004; Wu et al., 2004; Brockwell et al., 2004; Kelly
& Lee, 2004; Shoham et al., 2005; Eden, Frank, Barbieri, Solo, & Brown,
2004; Truccolo et al., 2005; Ergun, Barbieri, Eden, Wilson, & Brown, 2007; Yu
et al., 2009; Paninski et al., 2010). The Markov setting is extremely useful;
it lends itself naturally to many problems of interest in neuroscience and
has thus been fruitfully exploited. In particular, this setting is very useful
in an important class of decoding problems where stimulus estimation is
performed online: the stimulus at some time, t, is estimated conditioned on
the observation of the spike trains only up to that time, as opposed to the
entire spike train.

Some decoding problems cannot be formulated in the online estimation
framework. In such cases quantities of interest should naturally be condi-
tioned on the entire history of the spike train. In this article, we focus on
this latter class of problems (although many of the methods we discuss
can potentially be adopted to the online case as well). Furthermore, it is
awkward to cast many decoding problems of interest in the Markov set-
ting. A more general method that does not require such tree decomposition
properties is to calculate the maximum a posteriori (MAP) estimate xMAP

(Stanley & Boloori, 2001; Jacobs et al., 2006; Gerwinn et al., 2009; see the
companion paper, Pillow et al., 2011, for further review and discussion).
The MAP estimate requires no integration, only maximization of the pos-
terior distribution, and can remain computationally tractable even when
the stimulus space is very high dimensional. This is the case for general
log-concave posterior distributions; many problems in sensory and motor
coding fall in this class (it should be noted, however, that in many cases of
interest where this condition is not satisfied, for example, when the distribu-
tions are inherently multimodal, posterior maximization can become highly
intractable). The MAP is a good estimator when the posterior is well ap-
proximated by a gaussian distribution centered at xMAP (Tierney & Kadane,
1986; Kass, Tierney, & Raftery, 1991). Because the mode and the mean of a
gaussian distribution are identical, the MAP in this case is approximately
equal to the posterior mean as well. This gaussian approximation is ex-
pected to be sufficiently accurate, for example, when the prior distribution
and the likelihood function (i.e., p(r | x) as function of x) are not very far
from gaussian or when the likelihood is sharply concentrated around xMAP .
However, when the prior distribution has sharp boundaries and corners
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and the likelihood function does not constrain the estimate away from such
nongaussian regions, the gaussian approximation can fail, resulting in a
large average error in the MAP estimate. In such cases, one expects the
MAP to be inferior to the posterior mean E(x | r), which is the optimal
estimate under squared error loss.

Accordingly, in section 3 of this article we develop efficient Markov chain
Monte Carlo (MCMC) techniques for sampling from general log-concave
posterior distributions and compare their performance in situations rel-
evant to our neural decoding setting (for comprehensive introductions to
MCMC methods, including their application in Bayesian problems, see, e.g.,
Robert & Casella, 2005 and Gelman, 2004). By providing a tool for approxi-
mating averages (integrals) over the exact posterior distribution, p(x | r, θ )
(where θ are the parameters of the encoding forward model, in principle ob-
tained by fitting to experimental data), these techniques allow us to calculate
general Bayesian estimates such as E(x | r, θ ) and provide estimates of their
uncertainty. Although in principle many of the MCMC methods we discuss
are applicable even to posterior distributions that are not log concave, they
may lose their efficiency in such cases, and estimates based on them may
not even converge to true posterior averages. In section 4 we compare the
MAP and the posterior mean stimulus estimates based on the simulated
response of a population of retinal ganglion cells (RGC). In section 5 we dis-
cuss the applications of MCMC for calculating more complicated properties
of p(x | r, θ ) beyond marginal statistics, such as the statistics of first-passage
times. We also discuss an MCMC-based method known as bridge sampling
(Bennett, 1976; Meng & Wong, 1996) that provides a tool for a direct calcula-
tion of the mutual information. Using this technique, we show that for gaus-
sian priors, the estimates of Pillow et al. (2011) in the companion article for
this quantity based on the Laplace approximation are robust and accurate.
Finally, in section 6 we discuss the effect of uncertainty in the parameters
of the forward model, θ , on the MAP and posterior mean estimate. We pro-
ceed by first introducing the forward model used to calculate the likelihood
p(r | x, θ ).

2 The Encoding Model, the MAP,
and the Stimulus Ensembles

In this section, we give an overview of neural encoding models based on
generalized linear models (GLM) (Brillinger, 1988; McCullagh & Nelder,
1989; Paninski, 2004; Truccolo et al., 2005), and briefly review the treat-
ment of Pillow et al. (2011) in the companion article for MAP-based de-
coding. (Note that much of the material in this section is covered in this
companion article, but we include a brief review here to make this article
self-contained.) A neural encoding model assigns a conditional probability
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to the neural response given the stimulus. We take the stimulus to be an
artificially discretized, possibly multicomponent, function of time, x(t, n),
which will be represented as a d-dimensional vector x.1

In response to x, the ith neuron emits a spike train response,

ri (t) =
∑

α

δ(t − ti,α), (2.1)

where ti,α is the time of the αth spike of the ith neuron. We represent this
function by r i (we use boldface symbols for both continuous time and
discretized, finite-dimensional vectors) and the collection of response data
of all cells by r .

The response, r , is not fully determined by x and is subject to trial-to-trial
variations. We model r as a point process whose instantaneous firing rate is
the output of a GLM (Brillinger, 1988; McCullagh & Nelder, 1989; Paninski,
2004). This class of models has been extensively discussed in the literature.
Briefly, it is a generalization of the popular linear-nonlinear-Poisson model
that includes feedback and interaction between neurons, with parameters
that have natural neurophysiological interpretations (Simoncelli, Paninski,
Pillow, & Schwartz, 2004) and has been applied in a wide variety of experi-
mental settings (Brillinger, 1992; Dayan & Abbott, 2001; Chichilnisky, 2001;
Theunissen et al., 2001; Brown, Barbieri, Eden, & Frank, 2003; Paninski,
Fellows, Shoham, Hatsopoulos, & Donoghue, 2004; Truccolo et al., 2005;
Pillow et al., 2008). The model gives the conditional (on the stimulus, as
well as the history of the observed spike train) instantaneous firing rate of
the ith observed cell as

λi (t) ≡ f

⎛
⎝bi +

∑
τ,n

ki (t − τ, n)x(τ, n) +
∑

j

∑
β

hi j (t − tj,β )

⎞
⎠ , (2.2)

which we write more concisely as

λi = f

⎛
⎝bi + Ki · x +

∑
j

Hi j · r j

⎞
⎠ . (2.3)

Here, the linear operators (filters) Ki and Hi j have causal,2 time-translation-
invariant kernels ki (t, n) and hi j (t) (we note that the causality condition for
ki (t, n) is true only for sensory neurons). The kernel ki (t, n) represents the
ith cell’s linear receptive field, and hi j (t) describe possible excitatory or

1The dimension of x is thus d = NT , where T is the number of time steps and N is the
total number of components at each time step.

2That is, the kernels ki (t, n) and hi j (t) vanish for t < 0.
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r

Figure 1: Illustration of Bayesian decoding paradigm. (A) Bayesian decoding
performs inference about the stimulus using the observed spike times and a
specified encoding model. (B) Schematic of the encoding model (generalized
linear model) used for the decoding examples shown in this article. The model
parameters (ki and hi j ) can be easily fit using maximum likelihood. Once fit, the
model provides a description of the data likelihood, p(r | x), which is combined
with the prior p(x) to estimate x.

inhibitory postspike effects of the j th observed neuron on the ith. The diag-
onal components hii describe the postspike feedback of the neuron to itself,
and can account for refractoriness, adaptation and burstiness depending on
their shape (see Paninski, 2004, for details). The constant bi is the DC bias
of the ith cell, such that f (bi ) may be considered as the ith cell’s constant
baseline firing rate. Finally, f (·) is a nonlinear, nonnegative, increasing func-
tion.3 Figure 1B shows a schematic diagram of the GLM encoding model
for two cells.

Given the firing rate, equation 2.3, the forward probability, p(r | x, θ ), can
be written as (Snyder & Miller, 1991; Paninski, 2004; Truccolo et al., 2005)

log p(r | x, θ ) =
∑

i

[
rT

i log λi −
∫ T

0
λi (t) dt

]
+ const.

=
∑
i,α

log λ(ti,α) −
∑

i

∫ T

0
λi (t) dt + const., (2.4)

where θ = {
bi , ki , hi j

}
is the set of GLM parameters. The constant term

serves to normalize the probability and does not depend on x or θ . We
will restrict ourselves to f (u) that are convex and log concave (e.g., this

3We note that even though the nonlinearity, f (·), has to be an increasing function, with
appropriately chosen negative postspike feedback filters, hii , the mean firing rate of the
GLM modeled neurons can still exhibit saturation as a function of the input strength, x.
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is the case for f (u) = exp(u)). Then the log-likelihood function L(x, θ ) is
guaranteed to be a separately concave function of either the stimulus x or
the model parameters,4 regardless of the observed spike data r . The log con-
cavity with respect to the model parameters makes maximum likelihood
fitting of this model very easy, as concave functions on convex parameter
spaces have no nonglobal local maxima. Therefore, simple gradient ascent
algorithms can be used to find the maximum likelihood estimate.

The prior distribution describes the statistics of the stimulus in the nat-
ural world or that of an artificial stimulus ensemble used by the experi-
mentalist. In this article, we consider only priors relevant for the latter case.
Given a prior distribution, p(x), and having observed the spike trains, r , the
posterior probability distribution over the stimulus is given by Bayes’ rule,

p(x | r, θ ) = p(r | x, θ )p(x)
p(r | θ )

, (2.5)

where

p(r | θ ) =
∫

p(r | x, θ )p(x) dx. (2.6)

The MAP estimate is, by definition,

xMAP (r, θ ) = arg max
x

p(x | r, θ )

= arg max
x

[
log p(r | x, θ ) + log p(x)

]
, (2.7)

(Except in section 6, we will drop θ from the arguments of xMAP or the
distributions, it being understood that they are conditioned on the specific
θ obtained from the experimental fit.) As discussed above, for the GLM
nonlinearities that we consider, the likelihood, p(r | x, θ ), is log concave in
x. If the prior, p(x), is also log concave, then the posterior distribution is log
concave as a function of x, and its maximization (see equation 2.7) can also be
achieved using simple gradient ascent techniques. The class of log-concave
prior distributions is quite large, and it includes exponential, triangular,
and general gaussian distributions, as well as uniform distributions with
convex support.5

4That is, for fixed θ , it is a concave function of x, and vice versa, but in general not a
concave function of (x, θ ) jointly.

5Let us mention, however, that no first principle dictates that the posterior distribution
over a biologically or behaviorally relevant variable (e.g., an external variable that a part
of the brain seeks to estimate) should be log concave. In fact, distributions that are not
log concave, such as multimodal or very fat-tailed distributions, can be highly relevant in
biological settings.
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The MAP is a good low-error estimate when Laplace’s method provides
a good approximation for the posterior mean, which has the minimum
mean square error. This method is a general asymptotic method for ap-
proximating integrals when the integrand peaks sharply at its global maxi-
mum and is exponentially suppressed away from it. In the Bayesian setting,
this corresponds to posterior integrals of interest (e.g., posterior averages
and so-called Bayes factors) receiving their dominant contribution from the
vicinity of the main mode of p(x | r, θ ), that is, xMAP (for a comprehensive
review of Laplace’s method in Bayesian applications, see Kass et al., 1991,
and books on Bayesian analysis, such as Berger, 1993). In that case, we can
Taylor expand the log posterior to the first nonvanishing order around xMAP

(i.e., the second order, since the derivative vanishes at the maximum), ob-
taining the gaussian approximation (hereafter also referred to as the Laplace
approximation)

p(x | r, θ ) ≈ e− 1
2 (x−xMAP )T

J (x−xMAP )+const.. (2.8)

Here the matrix J is the Hessian of the negative log posterior at xMAP ,

J ≡ Jab(r, θ ) = −∂2 log p(x | r, θ )
∂xa∂xb

∣∣∣∣
x=xMAP

. (2.9)

Normally in the statistical setting, the Laplace approximation is formally
justified in the limit of large samples due to the central limit theorem, lead-
ing to a likelihood function with a very sharp peak (in neural decoding, the
meaning of “large samples” depends in general on the nature of the stimu-
lus, a point we discuss further in section 4). However, this approximation
often proves adequate even for moderately strong likelihoods as long as
the posterior is not grossly nonnormal. An obvious case where the approx-
imation fails is for strongly multimodal distributions where no particular
mode dominates. Here, we restrict our attention to the class of log-concave
posteriors that are unimodal. For this class and for a smooth enough GLM
nonlinearity, f (·), we expect equation 2.8 to hold for prior distributions
that are close to normal, even when the likelihood is not extremely sharp.
However, for flatter priors with sharp boundaries or “corners” we expect
it to fail unless the likelihood is narrowly concentrated away from such
nongaussian regions.

In this article, we set out to verify this intuition by studying two extreme
cases within the class of log-concave priors, gaussian and flat distributions
with convex support, given by

p(x) = 1√
(2π )d | C | e− 1

2 xTC−1x (2.10)
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and

p(x) ∝ IS (x), (2.11)

respectively.6 Here, C is the d × d covariance matrix, and IS is the indicator
function of a convex region, S, of Rd . In particular, for the white-noise
stimuli we consider in section 4, C = c2Id×d in the gaussian case, and S
is the d-dimensional cube [−√

3c,
√

3c]d in the flat case (this choice of S
corresponds to a uniformly distributed white noise stimulus). Here, c is the
standard deviation of the stimulus on a subinterval, and in the case where
x(t) is the normalized light intensity (with the average luminosity removed),
it is referred to as the contrast. We compare the performance of the MAP
and posterior mean estimates in each case in section 4. In section 5.2 we
verify the adequacy of this approximation for the estimation of the mutual
information in the case of gaussian priors.

3 Monte Carlo Techniques for Bayesian Estimates

For completeness, we start this section by reviewing the basics of the
Markov chain Monte Carlo (MCMC) method (for comprehensive textbooks
on MCMC methods, see, e.g., Gelman, 2004 and Robert & Casella, 2005).
However, the main point of this section is the discussion of the applica-
tions of this method to the neural case and ways of making the method
more efficient, as well as a comparison of the efficiency of different MCMC
algorithms, in this specific setting. As noted in section 1, the posterior distri-
bution, equation 2.5, represents the full information about the stimulus as
encoded in the prior distribution and carried by the observed spike trains,
r . However, a much simpler (and therefore less complete) representation of
this information can be provided by a so-called Bayesian estimate for the
stimulus, possibly accompanied by a corresponding estimate of its error. A
commonly used Bayesian estimate is the posterior mean,

E(x | r) =
∫

x p(x | r) dx, (3.1)

6White or correlated gaussian priors are often used in neural applications (e.g., gaus-
sian stimuli are widely used in neurophysiological experiments). Flat priors with in-
finitely sharp boundaries are less biologically motivated. However, flat priors are the best
log-concave approximation to binary priors, which are also quite common in sensory
physiology as both binary white noise and M-sequences (Pillow et al., 2008; Reid, Victor,
& Shapley, 1997). In this article, we consider the flat prior mainly as a limiting case of
concave log priors with sharp derivatives when we check the accuracy of the Laplace
approximation and compare the efficiency of various MCMC chains (see section 3.5) in
different regimes.
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which is the optimal estimator with respect to average square error. The
uncertainty of this estimator is in turn provided by the posterior covariance
matrix. When the posterior distribution can be reasonably approximated
as gaussian, the posterior mean can be approximated by its mode, that
is, the MAP estimate, equation 2.7, and the inverse of the log-posterior
Hessian, equation 2.9, can represent its uncertainty. We adopt here the
posterior mean, E(x | r), as a benchmark for comparing the performance of
the two estimates, and we take the deviation of the MAP from the latter as
a measure of the validity of the gaussian approximation for the posterior
distribution.

To calculate the posterior mean, equation 3.1, we have to perform a
high-dimensional integral over x. Computationally this is quite costly. The
Monte Carlo method is based on the idea that if one could generate N
independent and identically distributed (i.i.d.) samples, xt (t = 1, . . . , N),
from a probability distribution, π (x),7 then one could approximate integrals
involved in expectations such as equation 3.1 by sample averages. This
is because by the law of large numbers, for any g(x) (such that

∫ | g(x) |
π(x) dx < ∞),

ĝ(π )
N ≡ 1

N

N∑
t=1

g(xt) −→ Eπ (g) =
∫

g(x)π (x) dx, as N → ∞. (3.2)

Also, to decide how many samples are sufficient, we may estimate

Var(ĝN) = 1
N

Var[g(x)]; (3.3)

when N is large enough that this variance is sufficiently small, we may stop
sampling. However, it is often quite challenging to sample directly from
a complex multidimensional distribution, and the efficiency of methods
yielding i.i.d. samples often decreases exponentially with the number of
dimensions.

Fortunately, equation 3.2 (the law of large numbers) still holds if the i.i.d.
samples are replaced by an ergodic Markov chain, xt , whose equilibrium
distribution is π(x). This is the idea behind the MCMC method based on the
Metropolis-Hastings (MH) algorithm (Metropolis, Rosenbluth, Rosenbluth,
Teller, & Teller, 1953; Hastings, 1970). In the general form of this algorithm,
the Markov transitions are constructed as follows. Starting at point x, we

7We are, of course, interested in calculating posterior expectations corresponding to
the case π (x) = p(x | r), but as the discussion is general, we use π (x) in the rest of this
section for ease of notation.



56 Y. Ahmadian, J. Pillow, and L. Paninski

first sample a point y from some “proposal” density q (y | x) and then accept
this point as the next point in the chain, with probability

α(y | x) ≡ min
(

1,
π (y)q (x | y)
π (x)q (y | x)

)
. (3.4)

If y is rejected, the chain stays at point x, so that the conditional Markov
transition probability, T(y | x), is given by

T(y | x) = α(y | x)q (y | x) + R(x)δ(y − x), (3.5)

where

R(x) = 1 −
∫

α(y | x)q (y | x) dy, (3.6)

is the rejection probability of proposals from x. The reason for accepting
the proposals according to equation 3.4 is that doing so guarantees that
π(x) is invariant under the Markov evolution (see, e.g., Robert & Casella,
2005, for details). It is important to note that from equation 3.4, to execute
this algorithm we need only to know π (x) up to a constant, which is an
advantage because often, particularly in Bayesian settings, normalizing the
distribution itself requires the difficult integration for which we are using
MCMC (we discuss a method of calculating the normalization constant in
section 5.2).

The major drawback of the MCMC method is that the generated samples
are dependent, and thus it is harder to estimate how long we need to run
the chain to get an accurate estimate, and in general we may need to run
the chain much longer than the i.i.d. case. Thus, we would like to choose a
proposal density, q (y | x), that gives rise to a chain that explores the support
of π(x) (i.e., mixes) quickly, and has a small correlation time (roughly the
number of steps separation to yield i.i.d samples), to reduce the number
of steps the chain has to be iterated and hence the computational time
(see section 3.5 and Gelman, 2004, and Robert & Casella, 2005, for further
details). In general, a good proposal density q (y | x) should allow for large
jumps with higher probability for falling in regions of larger π(x) (so as to
avoid a high MH rejection rate). A good rule of thumb is for the proposals
q (. | x) to resemble the true density π (.) as much as possible. We review a few
useful well-known proposals and explore different ways of boosting their
efficiency in the GLM-based neural decoding setting. We note here that these
algorithms can be applied to general distributions and do not require the
log-concavity condition for π (x). However, some of the enhancements that
we consider can only be implemented, or are only expected to boost up the
performance of the chain, when the distribution π(x) is log concave (see
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the discussion of nonisotropic proposals in sections 3.1 and 3.2 and that of
adaptive rejection sampling in section 3.4).

3.1 Nonisotropic Random Walk Metropolis (RWM). Perhaps the most
common proposal is of the random walk type: q (x | y) = q (x − y), for some
fixed density q (.). Centered isotropic gaussian distributions are a simple
choice, leading to proposals

y ∼ x + σz, (3.7)

where z is gaussian of zero mean and identity covariance, and σ determines
the proposal jump scale. (In this simple form, the RWM chain was used in
a recent study to fit a hierarchical model of tuning curves of neurons in
the primary visual cortex to experimental data: Cronin, Stevenson, Sur, &
Kording, 2009.) Of course, different choices of the proposal distribution
will affect the mixing rate of the chain. To increase this rate, it is generally a
good idea to align the axes of q (.) with the target density, if possible, so that
the proposal jump scales in different directions are roughly proportional
to the width of π(x) along those directions. Such proposals will reduce the
rejection probability and increase the average jump size by biasing the chain
to jump in more favorable directions. For gaussian proposals, we can thus
choose the covariance matrix of q (.) to be proportional to the covariance of
π(x). Of course, calculating the latter covariance is often a difficult problem
(which the MCMC method is intended to solve), but we can exploit the
Laplace approximation, equation 2.8, and take the inverse of the Hessian
of the log posterior at MAP, equation 2.9, as a first approximation for the
covariance. This is equivalent to modifying the proposal rule 3.7 into

y ∼ x + σ Az, (3.8)

where A is the Cholesky decomposition of J −1

AA
T = J −1, (3.9)

and J was defined in equation 2.9. We refer to chains with such jump
proposals as nonisotropic gaussian RWM. Figure 2 compares the isotropic
and nonisotropic proposals. The modification, equation 3.8, is equivalent to
running a chain with isotropic proposals, equation 3.7, but for the auxiliary
distribution π̃(x̃) =| A | π (Ax̃) (whose corresponding Laplace approxima-
tion corresponds to a standard gaussian with identity covariance), and sub-
sequently transforming the samples, x̃t , by the matrix A to obtain samples
xt = Ax̃t from π(x). Implementing nonisotropic sampling using the trans-
formed distribution π̃ (x̃), instead of modifying the proposals as in equa-
tion 3.8 is more readily extended to chains more complicated than RWM
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Isotropic Non−Isotropic

Figure 2: Comparison of isotropic and nonisotropic Markov jumps for the gaus-
sian RWM and hit-and-run chains. In the RWM case, the circle and the ellipse
are level sets of the gaussian proposal distributions for jumping from the dot
at their center. In isotropic (nonisotropic) hit-and-run, the jump direction n
is generated by normalizing a vector sampled from an isotropic (nonisotropic)
gaussian distribution centered at the origin. The nonisotropic distributions were
constructed using the Hessian, equation 2.9, in the Laplace approximation, so
that the ellipse is described by x

T
J x = const. When the underlying distribution,

π (x), is highly nonisotropic, it is disadvantageous to jump isotropically, as it
reduces the average jump size and slows the chain. In RWM, the proposal jump
scale cannot be much larger than the scale of the narrow waist of the underlying
distribution, lest the rejection rate gets large (as most proposals will fall in the
dark region of small π (x)) and the chain gets stuck. For hit-and-run, there is no
jump scale to be set by the user, and the jump size in a given direction, n, is
set by the scale of the “slice” distribution, equation 3.13. Thus, in the isotropic
case, the average jump size will effectively be a uniform average over the scales
of π (x) along its principal axes. In the nonisotropic case, however, the jump
size will be determined mainly by the scale of the “longer” dimensions, as the
nonisotropic distribution gives more weight to these.

(see below), and therefore we used this latter method in our simulations
using different chains.

As we will see in the next section, in the flat prior case and for weak
stimulus filters or a small number of identical cells, the Laplace approxima-
tion can be poor. In particular, the Hessian, equation 2.9, does not contain
any information about the prior in the flat case, and therefore the approxi-
mate distribution, equation 2.8, can be significantly broader than the extent
of the prior support in some directions. To take advantage of the Laplace
approximation in this case, we regularized the Hessian by adding to it the
inverse covariance matrix of the flat prior, obtaining a matrix that would
be the Hessian if the flat prior was replaced by a gaussian with the same
mean and covariance. Although the gaussian with this regularized Hessian
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is still not a very good approximation for the posterior, we saw that in many
cases, it improved the mixing rate of the chain.

In general, the multiplication of a vector of dimensionality d by a matrix
involves O(d2), and the inversion of a d × d matrix involves O(d3) basic
operations. In the decoding examples we consider, the dimension of x is
most often proportional to the temporal duration of the stimulus. Thus,
naively, the one-time inversion of J and calculation of A takes O(T3) basic
operations, where T is the duration of the stimulus, while the multiplication
of x by A in each step of the MCMC algorithm takes O(T2) operations. This
would make the decoding of stimuli with even moderate duration forbid-
ding. Fortunately, the quasi-locality of the GLM model allows us to over-
come this limitation. Since the filters Ki in the GLM have a finite temporal
duration, Tk , the Hessian of the GLM log-likelihood, equation 2.4, is banded
in time: the matrix element J LL

t1n1,t2n2
≡ −∂2 log p(r | x)/∂x(t1, n1)∂x(t2, n2)

vanishes when | t1 − t2 | ≥ 2Tk − 1. The Hessian of the log posterior, equa-
tion 2.9, is the sum of the Hessians of the log prior and the log likelihood,
which in the gaussian case is

J = J LL + C−1, (3.10)

where C is the prior covariance (see equation 2.10). Thus, if C−1 is also
banded, J will be banded in time as well. As an example, gaussian au-
toregressive processes of any finite order form a large class of priors that
have banded C−1. In particular, for white noise stimuli, C−1 is diagonal, and
therefore J will have the same bandwidth as J . Efficient algorithms can
find the Cholesky decomposition of a banded d × d matrix, with bandwidth
nb , in a number of computations ∝ n2

bd , instead of ∝ d3 (e.g., the command
chol in Matlab uses the O(d) method automatically if J is banded and is en-
coded as a sparse matrix). Likewise, if B is a banded matrix with bandwidth
nb , the linear equation Bx = y can be solved for x in ∝ nbd computations.
Therefore, to calculate x = Ax̃ from x̃ in each step of the Markov chain, we
proceed as follows. Before starting the chain, we first calculate the Cholesky
decomposition of J such that J = B

T
B and x = Ax̃ = B−1x̃. Then at each

step of the MCMC, given x̃t , we find xt by solving the equation Bxt = x̃t .
Since both of these procedures involve a number of computations that scale
only with d (and thus with T), we can perform the whole MCMC decoding
inO(T) computational time. This allows us to decode stimuli with durations
on the order of many seconds. Similar methods with O(T) computational
cost have been used previously in applications of MCMC to inference and
estimation problems involving state-space models (Shephard & Pitt, 1997;
Davis & Rodriguez-Yam, 2005; Jungbacker & Koopman, 2007), but these had
not been generalized to non-state-space models (such as the GLM model
we consider here) where the Hessian has a banded structure nevertheless.
For a review of applications of state-space methods to neural data analysis
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see Paninski et al., 2010. That review also elucidates the close relationship
between methods based on state-space models and methods exploiting the
bandedness of the Hessian matrix, as described here. Exploiting the band-
edness of the Hessian matrix in the optimization problem of finding the
MAP is discussed in the companion article.

3.2 Hybrid Monte Carlo and MALA. A more powerful method for
constructing rapidly mixing chains is the so-called hybrid or Hamiltonian
Monte Carlo (HMC) method. In a sense, HMC is at the opposite end of
the spectrum with respect to RWM in that it is designed to suppress the
random walk nature of the chain by exploiting information about the local
shape of π(x), via its gradient, to encourage steps toward regions of higher
probability. This method was originally inspired by the equations of Hamil-
tonian dynamics for the molecules in a gas (Duane, Kennedy, Pendleton, &
Roweth, 1987) but has since been used extensively in Bayesian settings (for
its use in sampling from posteriors based on GLM, see Ishwaran, 1999; see
also Neal, 1996, for further applications and extensions).

This method starts with augmenting the vector x with an auxiliary
vector of the same dimension z. Let us define the potential energy
as E(x) = − log π (x) up to a constant and a “Hamiltonian function” by
H(x, z) = 1

2 zTz + E(x). Instead of sampling points, {xt}, from π(x), the HMC
method constructs an MH chain that samples points,

{
(xt, zt)

}
, from the

joint distribution p(x, z) ∝ e−H(x,z) ∝ exp (− 1
2 zTz)π(x). But since this distri-

bution is factorized into the products of its marginals for x and z, the x-part
of the obtained samples yields samples from π(x). On the other hand, sam-
pling from the marginal over z is trivial, since z is normally distributed. In a
generic step of the Markov chain, starting from (xt, zt), the HMC algorithm
performs the following steps to generate (xt+1, zt+1). First, to construct the
MH proposal:

1) Set x0 := xt , and sample z0 from the isotropic gaussian distribution
Nd (0, 1).

2) Set (x, z) := (x0 , z0 ), and evolve (x, z) according to the equations of
Hamiltonian dynamics8 discretized based on the leapfrog method,
by repeating the following steps L times
� z := z − σ

2 ∇E(x)
� x := x + σz
� z := z − σ

2 ∇E(x)

8The continuous Hamiltonian equations are

ż = − ∂ H
∂x

= −∇E(x), ẋ = ∂ H
∂z

= z,

under which the Hamiltonian function is conserved.
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Finally, to implement the MH acceptance step, equation 3.4,

3) With probability min{1, exp (−�H)}, where �H ≡ H(x, z) −
H(x0 , z0 ), accept the proposal x as xt+1. Otherwise reject it, and set
xt+1 = xt . (It can be shown that this is a bona-fide MH rejection rule,
ensuring that the resulting MCMC chain indeed has the desired
equilibrium density; Duane et al., 1987.)

This chain has two parameters, L and σ , which can be chosen to maximize
the mixing rate of the chain while minimizing the number of evaluations of
E(x) and its gradient. In practice, even a small L , requiring fewer gradient
evaluations, often yields a rapidly mixing chain, and therefore in our sim-
ulations, we used L ∈ {1, . . . , 5}. The special case of L = 1 corresponds to a
chain that has proposals of the form

y ∼ x − σ 2

2
∇E(x) + σz, (3.11)

where z is normal with zero mean and identity covariance, and the pro-
posal y is accepted according to the MH rule, equation 3.4. In the limit
σ → 0, this chain becomes a continuous Langevin process with the poten-
tial function E(x) = − log π (x), whose stationary distribution is the Gibbs
measure, π(x) = exp(−E(x)), without the MH rejection step. For a finite σ ,
however, the Metropolis-Hastings acceptance step is necessary to guaran-
tee that π(x) is the invariant distribution. The chain is thus referred to as
the Metropolis-adjusted Langevin algorithm (MALA) (Roberts & Tweedie,
1996).

The scale parameter σ , which also needs to be adjusted for the RWM
chain, sets the average size of the proposal jumps: we must typically choose
this scale to be small enough to avoid jumping wildly into a region of
low π(x), and therefore wasting the proposal, since it will be rejected with
high probability. At the same time, we want to make the jumps as large as
possible, on average, in order to improve the mixing time of the algorithm.
(See Roberts and Rosenthal, 2001, and Gelman, 2004, for some tips on how to
find a good balance between these two competing desiderata for the RWM
and MALA chains.) For the HMC chains with L > 1, we chose σ , by trial
and error, to obtain an MH acceptance rate of 60% to 70%. We adopted this
rule of thumb, based on a qualitative extrapolation of the results of Roberts
and Rosenthal (1998), for the special cases of L = 0 and 1 (corresponding to
the RWM and MALA chains, respectively), and their suggestion to tune the
acceptance rate in those cases to ∼25% and ∼55%, respectively, for optimal
mixing (for further discussion, see section 3.5; for a study on tuning the σ

parameter for HMC with general L , see, e.g., Kennedy, Edwards, Mino, &
Pendleton, 1996).

For highly nonisotropic distributions, the HMC chains can also be en-
hanced by exploiting the Laplace approximation (or its regularized version
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in the uniform prior case, as explained in the RWM case) by modifying
the HMC proposals. Equivalently, as noted after equation 3.9, we can sam-
ple from the auxiliary distribution π̃ (x̃) =| A | π(Ax̃) (where A is given in
equation 3.9) using the unmodified HMC chain, described above, and sub-
sequently transforming the samples by A. As explained in the final para-
graph of section 3.1, we can perform this transformation efficiently in O(T)
computational time, where T is the stimulus duration. Another practical
advantage of this transformation by A is that the process of finding the
appropriate scale parameter σ simplifies considerably, since π̃(x̃) may be
approximated as a gaussian distribution with identity covariance regard-
less of the scaling of different dimensions in the original distribution π(x).
To our knowledge, this O(T) enhancement of the HMC chain using the
Laplace approximation is novel. This chain turned out to be the most ef-
ficient in most of the decoding examples we explored (we discuss this in
more detail in section 3.5).

It is worth noting that when sampling from high-dimensional distribu-
tions with sharp gradients, the MALA, HMC, and RWM chains have a ten-
dency to be trapped in “corners” where the log posterior changes suddenly.
This is because when the chain eventually ventures close to the corner, a
jump proposal will very likely fall on the exterior side of the sharp high-
dimensional corner (the probability of jumping to the interior side from
the tip of a cone decreases exponentially with increasing dimensionality).
Thus, most proposals will be rejected, and the chain will effectively stop.
As we will see below, the hit-and-run chain is known to have an advantage
in escaping from such sharp corners (Lovasz & Vempala, 2004). We discuss
this point further in section 3.4.

3.3 The Gibbs Sampler. Gibbs sampling (Geman & Geman, 1984) is
an important MCMC scheme. It is particularly efficient when, despite the
complexity of the distribution π (x) = p(x | r, θ ), its one-dimensional condi-
tionals p(xm | x⊥m, r, θ ) are easy to sample from. Here, xm is the mth compo-
nent of x, and x⊥m denotes the other components, that is, the projection of x
on the subspace orthogonal to the mth axis. The Gibbs update is defined as
follows. First, choose the dimension m randomly or in order. Then update x
along this dimension, that is, sample xm from π (xm | x⊥m) (while leaving the
other components fixed). This is equivalent to sampling a one-dimensional
auxiliary variable, s, from

s ∼ h(s | m, x) ∝ π (x + sem), −∞ < s < ∞, (3.12)

and setting y = x + sem, where em is the unit vector along the mth axis
(we discuss how to sample from this one-dimensional distribution in
section 3.4). It is well known that the Gibbs rule is indeed a special
case of the MH algorithm where the proposal, equation 3.12, is always
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a)   Gibbs b)   ARS Hit−and−Run c)   Random Walk Metropolis

Figure 3: Comparison of different MCMC algorithms in sampling from a non-
isotropic truncated gaussian distribution. This distribution can arise as a pos-
terior distribution resulting from a nonisotropic gaussian likelihood and a uni-
form prior with square boundaries (at the frame borders). (a–c) Fifty-sample
chains for a Gibbs, isotropic hit-and-run and isotropic random walk Metropolis
(RWM) samplers, respectively. The grayscale indicates the height of the proba-
bility density. As seen in a , the narrow nonisotropic likelihood can significantly
hamper the mixing of the Gibbs chain as it chooses its jump directions unfa-
vorably. The hit-and-run chain mixes much faster as it samples the direction
randomly and hence can move within the narrow high-likelihood region with
relative ease. The mixing of the RWM chain is relatively slower due to its rejec-
tions (note that there are fewer than 50 distinct dots in c due to rejections; the
acceptance rate was about 0.4 here). For illustrative purposes, the hit-and-run
direction and the RWM proposal distributions were taken to be isotropic here,
which is disadvantageous, as explained in the text (also see Figure 2).

accepted. (For applications of the Gibbs algorithm for sampling from pos-
terior distributions involving GLM-like likelihoods, see Chan & Ledolter,
1995, and Gamerman, 1997, 1998; see also Smith, Wirth, Suzuki, & Brown,
2007, for some related applications in neural data analysis, discussed in
section 5.1.)

It is important to note that the Gibbs update rule can sometimes fail to
lead to an ergodic chain; the chain can get “stuck” and not sample from
π(x) properly (Robert & Casella, 2005). An extreme case of this is when
the conditional distributions pm(xm | x⊥m, r, θ ) are deterministic: then the
Gibbs algorithm will never move, clearly breaking the ergodicity of the
chain. More generally, in cases where strong correlations between the com-
ponents of x lead to nearly deterministic conditionals, the mixing rate of
the Gibbs method can be extremely low (Figure 3a shows this phenomenon
for a two-dimensional distribution with strong correlation between the two
components). Thus, it is a good idea to choose the parameterization of the
model carefully before blindly applying the Gibbs algorithm. For example,
we can change the basis or, more systematically, exploit the Laplace approx-
imation, as described above, to sample from the auxiliary distribution π̃(x̃)
instead.
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3.4 The Hit-and-Run Algorithm. The hit-and-run algorithm (Boneh &
Golan, 1979; Smith, 1980; Lovasz & Vempala, 2004) can be thought of as
random-direction Gibbs: in each step of the hit-and-run algorithm, instead
of updating x along one of the coordinate axes, we update it along a ran-
dom general direction not necessarily parallel to any coordinate axis. More
precisely, the sampler is defined in two steps. First, choose a direction n
from some positive density ρ(n) (with respect to the normalized Lebesgue
measure) on the unit sphere nTn = 1. Then, similar to Gibbs, sample the
new point on the line defined by n and x, with a density proportional to the
underlying distribution. That is, sample s from

s ∼ h(s | n, x) ∝ π (x + sn), −∞ < s < ∞, (3.13)

and set y = x + sn.9 Although the hit-and-run chain is well known in the
statistics literature, it has not been used in neural decoding.

The main gain over RWM or HMC is that instead of taking small local
steps (of size proportional to σ , in equation 3.7 or 3.11), we may take very
large jumps in the n direction; the jump size is set by the underlying distri-
bution itself, not an arbitrary scale, σ , which has to be tuned by the user to
achieve optimal efficiency. The jump size in a given direction, n, is set by
the scale of the “slice” distribution, equation 3.13.

This, together with the fact that all hit-and-run proposals are accepted,
makes the chain better at escaping from sharp high-dimensional corners
(see Lovasz & Vempala, 2004, and the discussion at the end of section 3.2
above). The advantage over Gibbs is in situations such as depicted in Fig-
ure 2, where jumps parallel to coordinates lead to small steps, but there are
directions that allow long jumps to be made by hit-and-run. The price to
pay for these possibly long nonlocal jumps, however, is that now (as well
as in the Gibbs case) we need to sample from the one-dimensional density
1
Zπ(x + sn), which is in general nontrivial. Fortunately, as we mentioned
above (see the discussion leading to equations 2.5 to 2.7 and following it),
in the case of neurons modeled by the GLM, the posterior distribution and
thus all its “slices” are log concave, and efficient methods such as adaptive
rejection sampling (ARS) (Gilks, 1992; Gilks & Wild, 1992) can be used to
sample from the one-dimensional slice in the hit-and-run step. Let us em-
phasize, however, that the hit-and-run algorithm by itself does not require
the distribution π (x) to be log concave. Given a method other than ARS for
sampling from the one-dimensional conditional distributions, π(x + sn),
hit-and-run can be applied to general distributions that are not log concave
as well.

9As with the Gibbs case, it can be shown again that this proposal leads to an MH
acceptance probability of one. Hence, hit-and-run is also a special case of MH.
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Regarding the direction density, ρ(n), the easiest choice is the isotropic
ρ(n) = 1. More generally it is easy to sample from ellipses by sampling
from the appropriate gaussian distribution and normalizing. Thus, again,
a reasonable approach is to exploit the Laplace approximation: we sample
n by sampling an auxiliary point x̃ from N (0, J −1), where J is the Hes-
sian, equation 2.9, and setting n = x̃/‖x̃‖ (see Figure 2). This prescription
is equivalent to sampling n from the distribution ρ(n) =

√
detJ /(nT J n)d ,

which is referred to as the angular central gaussian distribution in the sta-
tistical literature (see e.g., Tyler, 1987). This further advantages hit-and-run
over Gibbs by giving more weight to directions that allow larger jumps to
be made.

3.5 Comparison of Different MCMC Chains. Above, we pointed out
some qualitative reasons behind the strengths and weaknesses of the dif-
ferent MCMC algorithms in terms of their mixing rates and computational
costs. Here we give a more quantitative account and also compare the dif-
ferent methods based on their performance in the neural decoding setting.

From a practical point of view, the most relevant notion of mixing is how
fast the estimate ĝ(π )

N of equation 3.2 converges to the true expectation of the
quantity of interest, f . As one always has access to finitely many samples,
N, even in the optimal case of i.i.d. samples from π, ĝ(π )

N has a finite random
error, equation 3.3. For the correlated samples of the MCMC chain and for
large N, the error is larger, and equation 3.3 generalizes to (see Kipnis &
Varadhan, 1986)

Var(ĝN) = τcorr

N
Var[g(x)] + o

(τcorr

N

)
, (3.14)

for N � τcorr , independent of the starting point.10 Here, τcorr is the equilibrium
autocorrelation time of the scalar process g(xi ), based on the chain xi . It is
defined by

τcorr =
∞∑

t=−∞
γt ≡

∞∑
t=−∞

Corr (g(xi )g(xi+t)) , (3.15)

where we refer to γt as the lag-t autocorrelation for g(x). Thus, the smaller
the τcorr , the more efficient is the MCMC algorithm, as one can run a shorter
chain to achieve a desired estimated error.

10Strictly speaking this independence is true only for Harris recurrent chains, but this
is the case in most practical examples (see e.g., Geyer, 1992, and Tierney, 1991).
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Another measure of mixing speed, which has the merit of being more
amenable to analytical treatment, is the mean squared jump size of the
Markov chain,

a2 = E(‖xt+1 − xt‖2), (3.16)

termed the first-order efficiency (FOE) by Roberts and Rosenthal (1998). Let
us define γ m

t=1 to be the lag-1 autocorrelation of the mth component of x,
xm. From equation 3.16, it follows that the weighted average of γ m

t=1 over
all components (with weights Var[xm]), is given by 1 − a2

2
∑

m Var[xm] . Thus,
maximizing the FOE is roughly equivalent to minimizing correlations. One
analytical result concerning the mixing performance of different MCMC
chains was obtained in Roberts and Rosenthal (1998) for the FOE of RWM
and MALA when sampling from the restricted class of product distributions
π(x) = ∏d

m=1 g(xm), and asymptotically large dimension d = dim(x) (often
a relevant limit in neural decoding). Based on their results, the authors also
argue that in general, the jump scales of RWM and MALA proposals may
be chosen such that their acceptance rates are roughly 0.25 and 0.55, re-
spectively. For the special case of sampling from a d-dimensional standard
gaussian distribution, π (x) ∝ exp (−‖x‖2/2) and for optimally chosen pro-
posal jump scales, they show that the FOE of gaussian MALA and RWM
are asymptotically equal to 1.6d2/3 and 1.33, respectively.

To enable a comparison with hit-and-run, we can calculate its FOE di-
rectly. Using y = x + sn, with s sampled as in equation 3.13, we see that

a2 =
∫ ∫

E
(
s2 | n, x

)
ρ(n)π (x) dn dx. (3.17)

Now, from equation 3.13, h(s | n, x) ∝ e− (‖x‖2+s2+2sn·x)2

2 ∝ e− (s−n·x)2

2 , and us-
ing E

(
s2 | n, x

) = E (s | n, x)2 + Var (s | n, x), we obtain E
(
s2 | n, x

) = (n ·
x)2 + 1. Thus,

a2 =
∫

Eπ

(
(n · x)2 + 1

)
ρ(n) dn, (3.18)

=
∫

(n · n + 1) ρ(n) dn = 2, (3.19)

where we used Eπ (xnxm) = δnm for the standard gaussian distribution
Nd (0, 1) and n · n = 1. Therefore, while hit-and-run has higher FOE than
RWM in this case, we see that for unimodal, nearly gaussian distributions,
MALA will mix much faster (by a factor ∝ d2/3) than both RWM and hit-
and-run in large dimensions. Although we know of no such result for
general HMC chains with higher-order leapfrog steps than the one-step
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Figure 4: The estimated autocorrelation function for the hit-and-run, gaussian
random walk metropolis, and HMC chains, based on seven separate chains in
each case. The chains were sampling from a posterior distribution over a 50-
dimensional stimulus (x) space with white noise gaussian (a) and uniform (b)
priors with contrast c = 1 (see equations 2.10 and 2.11), and with GLM likelihood
(see equations 2.3 and 2.4) based on the response of two simulated ganglion
cells. The GLM nonlinearity was exponential, and the stimulus filters ki (t) were
taken to be weak delta functions with heights ±0.1. For the HMC, we used
L = 5 leapfrog steps in the gaussian prior case and L = 1 steps (corresponding
to MALA) in the flat prior case. The autocorrelation was calculated for a certain
one-dimensional projection of x. In general, in the gaussian prior case, HMC
was superior by an order of magnitude. For uniform priors, however, hit-and-
run was seen to mix faster than the other two chains over a wide range of
parameters such as the stimulus filter strength (unless the filter was strong
enough so that the likelihood determined the shape of the posterior, confining
its effective support away from the edges of the flat prior). This is mainly
because hit-and-run is better in escaping from the sharp, high-dimensional
corners of the prior support S. Here, MALA need not be slower than RWM,
and its larger autocorrelation in the plot is because its jump size was chosen
suboptimally, according to a rule (Roberts & Rosenthal, 1998) that is optimal
only for smooth distributions. For both priors, using nonisotropic proposal or
direction distributions improved the mixing of all three chains.

MALA algorithm, we expect their mixing speed to increase even further
for higher leapfrog steps. The superiority of HMC over the other chains
is clearly visible in Figure 4a, which shows a plot of the estimated auto-
correlation function γt for the sampling of the three chains from the GLM
posterior with standard gaussian priors, and a weak stimulus filter lead-
ing to a weak likelihood. More generally, in our simulations with gaussian
priors and smooth GLM nonlinearities, HMC (including MALA) had an
order-of-magnitude advantage over the other chains for most of the rele-
vant parameter ranges. Thus, we used this chain in section 5.2 for evaluating
the mutual information with gaussian priors.
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The situation can be very different, however, for highly nongaussian (but
still log-concave) distributions, such as those with sharp boundaries. In our
GLM setting, this can be the case with flat priors on convex sets, equa-
tion 2.11, when the likelihood is broad and does not restrict the posterior
support away from the boundaries and corners of the prior support S. In
this case, HMC and MALA lose their advantage because they do not take
advantage of the information in the prior distribution, which has zero gra-
dient within its support. Furthermore, as mentioned in sections 3.2 and 3.4,
when the convex body S has sharp corners, hit-and-run will have an advan-
tage over both RWM and HMC in avoiding getting trapped in those corners,
which can otherwise considerably slow the chain in large dimensionality
(see the arguments in Lovasz & Vempala, 2004). Finally, the MALA or HMC
proposals can in principle be inefficient in regions of sharp gradient changes;
for example, in the GLM setting, if the nonlinearity f (.) is very sharp, then
the log likelihood might vary much more quickly than quadratic. In such
cases, the HMC proposal jumps can be too large, falling in regions where
π(x) is very low and leading to high rejection rates. This can potentially re-
duce HMC’s advantage significantly even in case that the prior is gaussian.
However, in our experience, with f (.) = exp(.), this did not occur.

Figure 4b shows the estimated autocorrelation function for different
chains in sampling from the posterior distribution in GLM-based decoding
with a flat prior stimulus distribution, equation 2.11, with cubic support.11

For this prior, the correlation time of the hit-and-run chain was consistently
lower than those of the RWM, MALA, and Gibbs (not shown in the figure)
chains, unless the likelihood was sharp and concentrated away from the
boundaries of the prior cube. As we mentioned above (also see the next
section), the Laplace approximation is adequate in this latter case. Thus,
we see that hit-and-run is the faster chain when this approximation fails,
which is also the case where MCMC is more indispensable. We thus used
the hit-and-run algorithm in our decoding examples for the flat prior case
presented in the next section.

Finally, we note that other methods of diagnosing mixing and conver-
gence, such as the so-called r-hat (R̂) statistic (Brooks & Gelman, 1998),
gave consistent results with those based on the autocorrelation time, τcorr,
presented here.

4 Comparison of MAP and Monte Carlo Decoding

In this section we compare Bayesian stimulus decoding using the MAP and
the posterior mean estimates, equations 2.7 and 3.1, based on the response

11Although this prior belongs to the class of product densities considered in Roberts
and Rosenthal (1998), it does not satisfy the stringent smoothness conditions crucial for
the part of their theorem regarding the (fast) mixing of MALA.
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of a population of neurons modeled via the GLM introduced in section 2.
We will show that in the flat prior case, equation 2.11, the MAP estimate,
in terms of its mean squared error, is much less efficient than the posterior
mean estimate. We contrast this with the gaussian prior case, where the
Laplace approximation is accurate in a large range of model parameters,
and thus the two estimates are close. Furthermore, for both kinds of priors,
in the limit of strong likelihoods (e.g., due to a strong stimulus filter or a
large number of neurons), the posterior distribution will be sharply concen-
trated, the Laplace approximation becomes asymptotically more and more
accurate, and both estimates will eventually converge to the true stimulus
(more precisely, the part of the stimulus that is not outside the receptive
field of all the neurons; see footnote 13).

In the first two examples (Figures 5 and 6), the stimulus estimates were
computed given the simulated spike trains of a population of pairs of ON
and OFF retinal ganglion cells (RGC) in response to a spatially uniform,
full-field fluctuating light intensity signal. The stimuli were discretized
white noise with gaussian and flat distributions (see the paragraph after
equation 2.11). Spike responses were generated by simulating the GLM
point process encoding model, described by equations 2.3 and 2.4, with
exponential nonlinearity, f (u) = exp (u). The coupling between different
cells (Hi j of equation 2.3 for i �= j) was set equal to zero, but the diagonal
kernels, Hi i , representing the spike history feedback of each cell to itself
were closely matched to those found with fits to macaque ON and OFF
RGC’s reported in Pillow et al. (2008), and so were the DC biases, bi ; the
values of the DC biases were such that the baseline firing rate, exp (bi ),
in the absence of stimulus was approximately 7 Hz (see the appendix of
Pillow et al., 2011, the companion article, for a more detailed description of
the fits for stimulus and spike history filters). However, for demonstration
purposes, the stimulus filters, Ki , were set to positive and negative delta
functions (for ON and OFF cells, respectively), resulting in Ki · x being
proportional to the light stimulus, x(t), so that bandpass filtering of the
stimulus did not result in information loss and convergence of the estimates
to the true stimulus could be observed more easily. For a fixed number of
cells, the parameter of relevance here, which determines the signal-to-noise
ratio of the RGCs’ spike trains, is the strength of the filtered stimulus input,
Ki · x, to the GLM nonlinearity. The magnitude of this input is proportional
to c‖k‖, where c is the stimulus contrast and ‖k‖ is the norm of the receptive
field filter (which we have taken to be the same for all cells in this example).
Figure 5 shows the stimulus, the spike trains, and the two estimates for
three different magnitudes of c‖k‖, based on the response of one pair of
ON and OFF cells. Figure 6 shows the same based on the response of 10
identical pairs of RGCs.

Because the prior distribution here is flat on the 50-dimensional cube cen-
tered at the origin, the Laplace approximation, equation 2.8, will be justified
only when the likelihood is sharply concentrated and supported away from
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Figure 5: Comparison of MAP and posterior mean estimates, for a pair of ON
and OFF RGCs (see the main text), for different values of the stimulus filter
amplitude (‖k‖ = 0.5, 1, and 2.4 from left to right) and contrast c = 1 (defined
after equation 2.11. The product c‖k‖ represents the scale of the filtered stimulus
input term to the GLM nonlinearity (see the main text for the full description of
the GLM parameters used in this simulation). The stimulus (black traces in the
first row panels and dotted traces in other rows) consists of a 500 ms interval
of uniformly distributed white noise, refreshed every 10 ms. Thus, the stimulus
space is 50-dimensional. The dashed horizontal lines mark the boundaries of
the flat prior distribution of the stimulus intensity on each 10 ms subinterval.
They are set at ±√

3, corresponding to intensity variance of 1 and zero mean.
Dots on the top row show the spikes of the ON (gray) and the OFF (black) cell.
The solid traces in the middle row are the MAP estimates, and the solid traces
in the bottom row show the posterior means estimated from 10,000 samples
of a hit-and-run chain (after burning 2500 samples). The shaded regions in the
second and third rows are error bars showing the estimated marginal posterior
uncertainties about the stimulus value. For the MAP (second rows), these are
calculated as the square root of the diagonal of the inverse Hessian, J −1, but they
have been cut-off where they would have encroached on the zero prior region
beyond the horizontal dashed lines. For the posterior mean (third rows), the
error bars represent one standard deviation about the mean and are calculated
as the square root of the diagonal of the covariance matrix, which is itself
estimated from the MCMC chain (the standard error of the posterior mean
estimate due to the finite sample size of the MCMC were much smaller than
these error bars, and are not shown). Note that the error bars of the mean are
in general smaller than those for the MAP and that all posterior uncertainties
decrease as the stimulus filter amplitude grows.
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the edges of the cube.12 Moreover, since the flat prior is only “felt” on the
boundaries of the cube (the horizontal dashed lines in Figures 5 and 6),
the MAP will lie in the interior of the cube only if the likelihood has a
maximum there. For filtered stimulus inputs with small magnitude, c‖k‖,
the log likelihood, equations 2.3 and 2.4, becomes approximately linear in
the components of x. With a flat prior, the almost linear log posterior will
very likely be maximized only on the boundaries of the cube (since linear
functions on convex domains attain their maxima at the “corners” of the
domain). Thus, in the absence of a strong, confining likelihood, the MAP
has a tendency to stick to the boundaries, as seen in the first two columns
of Figure 5; in other words, the MAP falls on a corner of the cube, where
the Laplace approximation is worst and where MALA and RWM are least
efficient. We note that the likelihood will be further weakened, in fact, if
we replace the delta function stimulus filters with more realistic filters, as
the bandpass filtering will remove the dependence of the likelihood on the
features of the stimulus that were filtered out (see a similar discussion in
our companion article, Pillow et al., 2011, on MAP decoding).

A sharp likelihood confines the posterior away from the boundaries
of the prior support and solely determines the position of both the MAP
and the posterior mean. In this case, the gaussian approximation for the
posterior distribution is valid, and the two estimates will in fact be very
close (as the mean and the mode of a gaussian are one and the same). This
can be seen in the right column of Figure 5, where the large value of the
stimulus filter has sharpened the likelihood. Also, as is generally true in
statistical parameter estimation, when the number of data points becomes
large, the likelihood term gets very sharp, leading to accurate estimates.13

In our case, this corresponds to increasing the number of cells with similar
receptive fields, leading to the smaller error bars in Figure 6 and the more
accurate and closer MAP and mean estimates.

To compare the performance of the two estimates more quantitatively, in
Figure 7, we have plotted the average squared errors of the two estimates
under the full stimulus-response distribution, p(x, r) (for the same type of
stimulus and cell pair as in the Figure 5 simulations), as a function of the
magnitude of the filtered stimulus input, c‖k‖. This was done by generating
five samples of the stimulus in each case and then simulating the GLM to

12More precisely, “sharply concentrated” here means that the curvature of the log
posterior is large enough so that the Taylor expansion of the log posterior involved in
the Laplace approximation, equation 2.8, is accurate for deviations from xMAP on a scale
determined by the inverse square root of the smallest eigenvalue of the Hessian matrix,
equation 2.9.

13This is obviously not the case, however, for parameter directions along which the
data are noninformative and the likelihood function does not vary much. In the RGC
case, these correspond to stimulus features (directions in the stimulus space) that fall
orthogonal to the cells’ spatiotemporal filters Ki , and are hence filtered out.
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Figure 7: Comparison of mean squared error (
〈‖x̂ − x‖2

〉
/d) of MAP and pos-

terior mean estimates for uniform (left panel) and gaussian (right panel) white
noise stimulus distributions as a function of the stimulus filter strength times
contrast. In the left panel, the data points at ‖k‖ = 0 were obtained for very
small but nonzero ‖k‖. As seen here, for flat priors, MAP has a higher average
squared error than the posterior mean, except for large values of the stimulus
filter where both estimates converge to the true value. For gaussian priors, the
Laplace approximation is accurate, and therefore the posterior mean and MAP
are very close. Thus, their efficiency (e.g., as measured by the inverse of their
mean squared error) is very similar even for small values of the stimulus fil-
ter, and the fact that the computational cost of calculating MAP is much lower
makes it the preferable estimate here.

generate the spike train response of the pair of ON and OFF cells to each
stimulus, leading to sample pairs (xi , r i ) for i = 1, . . . , 5. For each of the
responses, r i , the MAP and MCMC mean were computed based on the
posteriors p(x | r i ). The average (over p(x, r)) square error,

〈‖x̂(r) − x‖2
〉
,

was then approximated by its sample mean,
∑5

i=1 ‖x̂(r i ) − xi‖2/5. The left
and right panels in Figure 7 show plots of the squared error per dimension,
for MAP and mean estimates, as a function of the stimulus filter strength for
the case of the flat and gassian white noise stimulus ensembles, respectively.
As is evident from the plots, in the former ensemble, the MAP is inferior
to the mean, due to its higher mean squared error, unless the filter strength
is large. For the gaussian ensemble, the plot shows that the error of the
MAP and posterior mean estimates are very close throughout the range of
stimulus filter strength. Thus, due to its much lower computational cost,
the MAP-based decoding method of Pillow et al. (2011) in the companion
article is superior for this prior. Let us mention that the magnitude of the
filtered stimulus, c‖k‖, in the experimental data reported in Pillow et al.
(2008) (which is also the basis of the final example in this section—see
Figure 8) was in the range 3 ± 1, depending on the cell; smaller values of
c‖k‖ can be achieved experimentally by lowering the contrast of the visual
stimulus as needed. Thus, the values of this parameter used in Figure 7, as
well as in Figures 5 and 6, are on the same order of magnitude as those used
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in that experiment and cover a range of values that is experimentally and
biologically relevant.

Finally, we compared the MAP and posterior mean estimates in decoding
the experimentally recorded spike trains. The spike trains were recorded
from a group of 11 ON and 16 OFF RGCs (whose receptive fields fully cover
a patch of the visual field) in response to the light signal of the optically
reduced image of a cathode ray display that refreshes at 120 Hz and is
projected on the retina (Litke et al., 2004; Shlens et al., 2006). The stimlulus,
x, in this case, is a spatiotemporally fluctuating binary white noise, with
x(t, n) representing the contrast of the pixel n at time t. In Pillow et al.
(2008), 20 minutes of these data were used to fit the GLM model parameters
including cross-couplings, hi j , to these cells (see that reference for details
about the recording and the fitting method and a full description of the fit
GLM parameters). Here, we took a 500 ms portion of the recorded spike
trains of six neighboring RGCs (three ON and three OFF) and, using the fit
GLM parameters for them, decoded the filtered inputs,

yi ≡ Ki · x, (4.1)

to these cells using the MAP and posterior mean (calculated using an HMC
chain). The inputs are a priori correlated due to the overlaps between the
cell’s receptive fields, and the covariance matrix of the yi is given by Ci j

y =
KiCx K

T

j , where Cx = c21 is the covariance of the white noise visual stimulus.
More explicitly,

Cy(i, t1; j, t2) ≡ Cov[yi (t1), yj (t2)] = c2
∑
t,n

ki (t1 − t, n)k j (t2 − t, n).

(4.2)

Notice that with the experimentally fit ki , which have a finite temporal
duration Tk , the covariance matrix, Cy is banded: it vanishes when |t1 − t2| ≥
2Tk − 1. Since x is binary, yi is not a gaussian vector. However, because the
filters Ki (t, n) have a relatively large spatiotemporal dimension, yi (t) are
weighted sums of many i.i.d. binary random variables, and their prior
marginal distributions can be well approximated by gaussian distributions.
For this reason and because the likelihood was relatively strong for these
data (and hence the dependence on the prior relatively weak), we replaced
the true (highly nongaussian) joint prior distribution of yi with a gaussian
distribution with zero mean and covariance, equation 4.2. This allowed us
to implement the efficient nonisotropic HMC chain, described above, so
that its computational cost scales only linearly with the stimulus duration
T , allowing us to decode very long stimuli. However, in this case, the details



Efficient MCMC Methods for Decoding Neural Spike Trains 75

of the procedure explained in the final paragraph of section 3.1 have to be
modified as follows. The Hessian for y is given by

J y = C−1
y + J LL

y , (4.3)

where the Hessian of the negative log likelihood term, J LL
y , is now diagonal,

because yi (t) affects the conditional firing rate instantaneously (see equa-
tion 2.3). Let AA

T = J −1
y , similar to equation 3.9. The nonisotropic chain

requires the calculation of Aỹ for some vector ỹ at each step of the MCMC.
In order to carry this out inO(T) computational time, we proceed as follows.
First we calculate the Cholesky decomposition, L , of Cy, satisfying L L

T = Cy.
As mentioned in section 3.1, since Cy is banded, this can be performed in
O(T) operations. Then we can rewrite equation 4.3 as

J y = L−1T
QL−1, Q ≡ I + L

T
J LL

y L . (4.4)

Since L is banded (due to the bandedness of Cy) and J LL
y is diagonal, it

follows that Q is also banded. Therefore, its Cholesky decomposition, B,
satisfying B

T
B = Q, can be calculated in O(T) time and is also banded.

Using this definition and inverting equation 4.4, we obtain AA
T = J −1

y =
L B−1

(
L B−1

)T

, from which we deduce A = L B−1, or

Aỹ = L B−1ỹ. (4.5)

The calculation of L and B can be performed before running the HMC
chain. Then at each step we need to perform equation 4.5. As described in
the final paragraph of section 3.1, calculating B−1ỹ and the multiplication
of the resulting vector by L require only O(T) elementary operations due
to the bandedness of B and L .

Figure 8 shows the spike trains, as well as the corresponding true inputs
and MAP and posterior mean estimates. The closeness of the posterior mean
to the MAP (the L2 norm of their difference is only about 9% of the L2 norm
of the MAP) is an indication of the accuracy of the Laplace approximation
in this case.

5 Other Applications: Estimation of Nonmarginal Quantities

So far we have focused on using the MCMC samples to estimate E(x | r) or
the posterior covariance. Both quantities involve separate averaging over
the marginal distribution of single components or pairs of components
of x. However, since MCMC provides samples from the joint distribution
p(x | r), we can also calculate quantities that cannot be reduced to averages
over one- or two-dimensional marginal distributions and involve the whole
joint distribution p(x | r). We consider two examples below.
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Figure 8: The top six panels show the posterior mean (solid curve) and the MAP
(dashed curve) estimates of the stimulus input to three pairs of ON and OFF
RGCs given their spike trains from multi-electrode array recordings. The GLM
parameters used in this example were fit to data from the same recordings (see
Pillow et al., 2008, for the full description of the fit GLM parameters). The jagged
black traces are the actual inputs. The bottom panel shows the recorded spike
trains. The posterior means were estimated using an HMC chain with 15,000
samples (after the initial 3750 samples were burned). The gray error bars around
the posterior means (solid curves) represent its posterior marginal standard de-
viations, which were estimated using the MCMC itself (the error bars for the
MAP, e.g., based on the Hessian, would not be distinguishable in this figure, and
are not shown). The closeness of the posterior mean to the MAP is an indication
of the accuracy of the Laplace approximation. (This decoding example also ap-
peared briefly in Paninski et al., 2010; see also Pillow et al., 2011, the companion
article.)

5.1 Posterior Statistics of Crossing Times. One important example of
these nonmarginal computations involves the statistics (e.g., mean and vari-
ance) of some crossing time for the time series x (e.g., the time that xt first
crosses some threshold value). (First-passage time computations are es-
pecially important, for example, in the context of integrate-and-fire-based
neural encoding models in Paninski, Iyengar, Kass, & Brown, 2008.) Smith
et al. (2004) proposed a hidden state-space model that provides a dynamical
description for the learning process of an animal in a task learning exper-
iment (with binary responses) and yields suitable statistical indicators for
establishing the occurrence of learning or determining the “learning trial.”
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In the proposed model, the state variable, xt , evolves according to a gaus-
sian random walk from trial to trial (labeled by t), and the probability of a
correct response on every trial, qt , is given by a logistic function of the cor-
responding state variable, xt . Given the observation of the responses in all
trials, the hidden state variable trajectory can be inferred. Smith et al. (2007)
carried out this inference in Bayesian fashion by using Gibbs sampling from
the posterior distribution over the state variable time series and the model
parameters conditioned on the observed responses. There, the learning trial
was defined as the first trial after which the ideal (Bayesian) observer can
state with 95% confidence that the animal will perform better than chance.
More mathematically, using the MCMC samples (using the winBUGS pack-
age), they obtained the sequence of the lower 95% confidence bounds for
qt for all t’s (for each t, this bound depends on only the one-dimensional
marginal distribution of qt). The authors defined the learning trial as the t
for which the value of this lower confidence bound crosses the probability
value corresponding to chance performance and stays above it in all the
following trials.

However, it is reasonable to consider several alternative definitions of
learning trial in this setting. One plausible approach is to define the learning
trial, tL , in terms of certain passage times of qt , for example, the trial in which
qt first exceeds the chance level and does not become smaller than this value
at later trials. In this definition, tL is a random variable whose value is not
known by the ideal observer with certainty, and its statistics is determined
by the full joint posterior distribution and cannot be obtained from its
marginals. The posterior mean of tL provides an estimate for this quantity
and its posterior variance, an estimate of its uncertainty. These quantities
involve nonlinear expectations over the full joint posterior distribution of
{xt} and can be estimated by the MCMC samples from that distribution.

Figure 9 shows a simulated example in which we used our MCMC
methods to decode the crossing times of the input to a Poisson neuron
based on the observation of its spike train. The neuron’s rate was given
by λ(t) = exp(xt + b), and the threshold corresponded to a value xt = x0.
The hidden process xt was assumed to evolve according to a gaussian
AR(1) process, as in Smith et al. (2007). After a spike train was observed,
samples from the posterior distribution of xt were obtained by an HMC
chain. To estimate the first and the last times that xt crosses x0 from below, we
calculate these times for each MCMC sample, obtaining samples from the
posterior distribution of these times. Then we calculate their sample mean to
estimate when learning occurs. Figure 9 shows the full histograms of these
passage times, emphasizing that these statistics are not fully determined by
a single observation of the spike train.

As a side note, to obtain a comparison between the performance of
the Gibbs-based winBUGS package employed in Smith et al. (2007) versus
the HMC chain used here, we simulated a Gibbs chain for y(t) on the same
posterior distribution. The estimated correlation time of the Gibbs chain was
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Figure 9: Estimation of threshold crossing times using MCMC sampling. The
spike trains are generated by an inhomogeneous Poisson process with a rate
λ(t) = exp(xt + b) that depends on a changing hidden variable xt (times are in
arbitrary units). Having observed a particular spike train (bottom row of the top
panel), the goal is to estimate the first or the last time that xt crosses a threshold
from below. The top and the middle plots show the true xt (black jagged lines)
and the threshold (the dashed horizontal lines). The top plot also shows the
posterior marginal median for xt (curvy line) given the observed spike train,
and its corresponding posterior marginal 90% confidence interval (shaded area).
Smith et al. (2007) used these marginal statistics to estimate the crossing times.
However, a more systematic way of estimating these times is to directly use their
(nonmarginal) posterior statistics. The middle plot also shows three posterior
samples of xt (curvy lines) obtained using an HMC Markov chain. The first
and last crossing times are well defined for each of these three curves and are
marked by black and gray dots, respectively. For each MCMC sample curve,
we calculated these crossing times and then tabulated the statistics of these
times across all samples. The bottom panel shows the MCMC-based posterior
histograms of these crossing times thus obtained. The two separated peaks
correspond to the first and the last crossing times. The posterior mean and
variance of the crossing times can then be calculated from these histograms.

≈ 130—that is, Gibbs mixes a hundred times slower than the HMC chain
here due to the nonnegligible temporal correlations in xt (see Figure 9; recall
Figure 3). In addition, due to the state-space nature of the prior on xt here,
the Hessian of the log posterior on x is tridiagonal, and therefore the HMC
update requires just O(T) time, just like a full Gibbs sweep.

5.2 Mutual Information. Our second example is the calculation of
the mutual information. Estimates of information transfer rates of neural
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systems, and the mutual information between the stimulus and response
of some neural population, are essential in the study of the neural encod-
ing and decoding problems (Bialek, Rieke, de Ruyter van Steveninck, &
Warland, 1991; Warland, Reinagel, & Meister, 1997; Barbieri et al., 2004). Es-
timating this quantity is known to be often computationally quite difficult,
particularly for high-dimensional stimuli and responses (Paninski, 2003).
Pillow et al. (2011), in the companion article, present an easy and efficient
method for calculating the mutual information for neurons modeled by the
GLM, equations 2.3 and 2.4, based on the Laplace approximation, equa-
tion 2.8. As discussed above, this approximation is expected to hold in the
case of gaussian priors, in a broad region of the GLM parameter space. Our
goal here is to verify this intuition by comparing the Laplace approximation
for the mutual information with an exact direct estimation using MCMC
integration. As we will see, the main difficulty in using MCMC to estimate
the mutual information lies in the fact that we can calculate p(x | r) only up
to an unknown normalization constant. Estimating this unknown constant
turns out to be tricky in that naive methods for calculating it lead to large
sampling errors. Below, we use an efficient low-error method, known as
bridge sampling, for estimating this constant.

The mutual information is by definition equal to the average reduction in
the uncertainty regarding the stimulus (i.e., the entropy, H, of the distribu-
tion over the stimulus) of an ideal observer having access to the spike trains
of the RGC, compared to its prior state of knowledge about the stimulus:

I [x; r] = H [x] − E(H[x | r])

≡−
∫

p(x) log p(x) dx +
〈∫

p(x | r) log p(x | r) dx
〉

p(r)
. (5.1)

Here, p(r) is given by equation 2.6, and the posterior probability p(x | r) is
given by Bayes’ rule, equation 2.5. The logarithms are assumed to be in base
2, so that information is measured in bits. We consider gaussian priors given
by equation 2.10, for which we can compute the entropy H[x] explicitly:

H[x] = d
2

log 2πe + 1
2

log |C|. (5.2)

Thus, the real problem is to evaluate the second term in equation 5.1. The
integral involved in the definition of H[x | r] is in general hard to evaluate.
One approach, which is computationally very fast, is to use the Laplace
approximation, equation 2.8, if it is justified; we took this approach in Pillow
et al. (2011), the companion article. In that case, from equation 2.8, we obtain

I [x; r] ≈
〈

1
2

log | C · J (r) |
〉

p(r)
≡ 〈

IL (r)
〉
p(r) = IL , (5.3)

where J (r) is the Hessian, equation 2.9.
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More generally, we can use the MCMC method developed in section 3
to estimate H[x | r] directly. The integral involved in H[x | r], equation 5.1
(before averaging over p(r)), has the form

E (g(x) | r) =
∫

g(x)p(x | r)dx, (5.4)

that is, one representing the posterior expectation of a function g(x). If we
could evaluate g(x) for arbitrary x, we could evaluate this expectation by
the MCMC method, via equation 3.2. As we mentioned above, the difficulty
lies in that in general, we can evaluate only an unnormalized version of the
posterior distribution, and thus g(x) = − log p(x | r), only up to an additive
constant. Suppose we can evaluate

q (x | r) ≡ Z(r)p(x | r), (5.5)

for some Z(r) at any arbitrary x. Then H[x | r] can be rewritten as

H[x | r] = log Z(r) − 〈
log q (x | r)

〉
p(x|r) . (5.6)

From the normalization condition for p(x | r), Z(r) is given by

Z(r) =
∫

q (x | r) dx. (5.7)

The main difficulty in calculating the mutual information lies in estimating
Z(r) (for a discussion of the difficulties involved in estimating normalization
constants and marginal probabilities see Meng & Wong, 1996; the discussion
of the paper by Newton & Raftery, 1994; and Neal, 2008). By contrast, the
second term in equation 5.6 already has the form equation 5.4 (with q (x | r)
replacing g(x)) and can be estimated using equation 3.2. In the following,
we introduce an efficient method for estimating Z(r).

As noted above, if in equations 5.6 and 5.7, we replace q (x | r) with the
Laplace approximation,

qL (x | r) ≡ e− 1
2 (x−xMAP )T J (x−xMAP )−L0 ≡ ZL (r)pL (x | r), (5.8)

we obtain the result in equation 5.3, as a first approximation to the mutual
information. Here we defined

L0 ≡ − ln q (xMAP | r), (5.9)

and from the normalization condition for pL (x | r), we must have

ZL (r) =
∫

qL (x | r) dx =
√

(2π )d | J (r) |−1e−L0 . (5.10)
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We included the constant L0 in the exponent in equation 5.8 so that when
the Laplace approximation is accurate, we have log qL (x | r) ≈ log q (x | r)
and log Z(r) ≈ log ZL (r).

We now write the exact mutual information as I [x; r] = 〈I (r)〉p(r), and
write I (r) ≡ H[x] − H[x | r] as the Laplace approximation for it plus a
correction,

I (r) = IL (r) + δ I (r) = 1
2

log | C · J (r) | + δ I (r), (5.11)

where

δ I (r) ≡ −(H[x | r] − HL [x | r]). (5.12)

Using the general formula 5.6 for both the true distribution, equation 5.5,
and its gaussian approximation, equation 5.8, we obtain

δ I (r) =−(H[x | r]−HL [x | r]) ≡ 〈
log q (x | r)

〉
p(x|r) − 〈

log qL (x | r)
〉
pL (x|r)

− log Z(r) + log ZL (r)

= 〈
log q (x | r)

〉
p(x|r) − 〈

log qL (x | r)
〉
pL (x|r) − log η, (5.13)

with η ≡ Z(r)/ZL (r). Thus, after averaging over p(r), δ I (r), calculated us-
ing equation 5.13, gives the correction to the Laplace approximation for the
mutual information, equation 5.3. When the Laplace approximation is jus-
tified, this correction will be small (even before averaging over p(r)). Also,
note that in that case η ≈ 1, and the last term in equation 5.13 is small on its
own.

The second term in equation 5.13 is readily evaluated;

− 〈
log qL (x | r)

〉
pL (x|r) = d

2 ln 2
+ L0

ln 2
, (5.14)

and the first term can be evaluated using the MCMC via equation 3.2. To
evaluate the third term, we use the following trick. For any well-behaved
function α(x), we have

η = Z(r)
ZL (r)

= Z(r)
ZL (r)

∫
p(x | r)α(x)pL (x | r) dx∫
pL (x | r)α(x)p(x | r) dx

= 〈q (x | r)α(x)〉pL (x|r)

〈qL (x | r)α(x)〉p(x|r)
.

(5.15)

Using this formula, we can estimate η by estimating the numerator and
denominator on the right-hand side according to equation 3.2, with sam-
ples drawn from p(x | r) and pL (x | r), respectively, for example, by MCMC.
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However, as we have access only to finitely many samples from each dis-
tribution, care must be taken in the choice of the function α to avoid large
estimation errors. For example, if the support of p(x | r) and pL (x | r) has a
small overlap, α(x) has to be chosen such that it amplifies the contribution
from the region of overlap of the two distributions, thus acting as a bridge
connecting the two supports. Otherwise (e.g., if α(x) is a constant) both the
numerator and denominators in equation 5.15 can be very small in such a
case, leading to an almost indeterminate ratio with large random error.14

A method of evaluating η using equation 5.15 by employing an optimal
α(x), was originally developed by Bennett (1976) and was further refined
by Meng and Wong (1996); it is referred to as bridge sampling for the above
reason. These authors have shown that the asymptotically optimal (for large
number of samples from each distribution) choice of α(x) is

α(x) ∝ 1
s1 p(x | r) + s2 pL (x | r)

∝ 1
s1q (x | r) + ηs2qL (x | r)

, (5.16)

where si = Ni/(N1 + N2) (i = 1, 2) and N1,2 are the number of samples
drawn from p(x | r) and pL (x | r), respectively. As this choice for α(x) itself
depends on η, it suggests an iterative solution, where we substitute equation
5.16 with the current η into equation 5.15 to obtain the next iteration:

η̂(t+1) =
1

N2

∑N2
j=1

q (x2 j |r)
s1q (x2 j |r)+η̂(t)s2qL (x2 j |r)

1
N1

∑N1
j=1

qL (x1 j |r)
s1q (x1 j |r)+η̂(t)s2qL (x1 j |r)

=
1

N2

∑N2
j=1

l2 j

s1l2 j +η̂(t)s2

1
N1

∑N1
j=1

1
s1l1 j +η̂(t)s2

, (5.17)

where xi j (i = 1, 2) are samples drawn from p(x | r) and pL (x | r), re-
spectively, and li j ≡ q (xi j | r)/qL (xi j | r). Since we expect Z ≈ ZL , we take
η̂(0) = 1. In our calculations, we stopped the bridge sampling iterations
when log η̂(t+1)

η̂(t) < 0.001d , where d is the stimulus dimension.
Figure 10 shows a plot of IL and δ I per stimulus dimension, calculated

as described above,15 as a function of the standard deviation of the filtered
stimulus input (which, for the white noise stimulus, is the contrast, c, times
the magnitude of ki (t)). IL grows as c‖ki‖ grows, but δ I does not change
significantly and remains small. Thus, the Laplace approximation for the

14For a similar reason, a “brute force” method for computing Z, such as a simple Monte
Carlo integration of the high-dimensional distribution q (x | r), gives rise to an estimate
with slow convergence and a large error (Meng & Wong, 1996).

15In principle, according to equations 5.1 to 5.3, one has to average IL (r) and δ I (r)
over the marginal response distribution p(r). But due to the intensive nature of IL (r)/d
and δ I (r)/d and the large d, they depended on the specific realization of r only weakly,
and they were to a good degree self-averaging, so that averaging over p(r) would not
considerably alter the plot of Figure 10. A similar argument appeared in Strong, Koberle,
de Ruyter van Steveninck, & Bialek, 1998.
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Figure 10: Comparison of Laplace approximation to mutual information per
stimulus dimension, IL/d , and the correction, δ I/d (see equation 5.11), based
on the MCMC estimate of the true value for a pair of ON and OFF RGCs, as a
function of the magnitude of the filtered stimulus input c‖k‖, where c is the con-
trast and ‖k‖ is the norm of the stimulus filter. The computationally inexpensive
Laplace approximation for the mutual information is accurate for moderately
strong stimulus filters, which give rise to sharp likelihoods. Furthermore, at
c‖k‖ = 0, the likelihood has no dependence on x, and the posterior is equal
to the gaussian prior, for which the Laplace approximation is exact. Thus, for
very small ‖k‖ also, IL becomes exact and the error, δ I , has a maximum around
c‖k‖ ≈ 2.5.

mutual information is accurate for moderately large c‖ki‖. Furthermore, for
vanishing c‖ki‖, the posterior is equal to the gaussian prior in this case, and
this approximation is exact. Therefore, the error δ I has a maximum at a finite
value of the stimulus filter, away from which the Laplace approximation
is accurate. For comparison with our real spike data example presented in
section 4 and Figure 8, we note that in that case, the standard deviation of the
filtered stimulus to different cells was in the range c‖k‖ ∼ 3 ± 1, depending
on the cell, and the Laplace approximation did indeed provide an accurate
approximation for the mutual information, with δ I/IL = 0.09.

6 Effect of Uncertainty in the Model Parameters

In the previous sections we assumed the values of the parameters involved
in the GLM likelihood, equations 2.3 and 2.4, were known exactly. Of course,
in reality these parameters themselves are obtained by fitting the GLM to
experimental data and are thus known only with a finite accuracy. In this
section, we investigate the effect of uncertainty in the GLM parameters θ (see
section 2) on the posterior mean estimate for the stimulus. We represent this
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uncertainty by a probability distribution, p(θ ). In the presence of parameter
uncertainty, the posterior mean of the stimulus, x, is modified to

E(x | r) =
∫

E(x | r, θ )p(θ ) dθ =
∫

x p(x | r, θ )p(θ ) dx dθ. (6.1)

(In this section, unlike in sections 3 to 5, we write θ explicitly when a
distribution is conditioned on it. When there is no θ in the argument of the
distribution, it means it has been marginalized.) We assume the uncertainty
in the parameters is small enough that a Laplace approximation for p(θ )
applies, that is, it can be taken to be gaussian with mean θML and a small
covariance I −1(θML). Here, θML is the maximum likelihood fit to data, and
I −1(θML) is the Hessian of the negative log likelihood (as a function of GLM
parameters, given the experimental data) at θML. For simplicity we assume
the GLM nonlinearity (see equation 2.3) is exponential: f (u) = exp (u). We
also assume that the prior stimulus ensemble is gaussian, with probability
distribution described by equation 2.10.

We would like to understand how the uncertainty in θ will affect the pos-
terior estimate. This uncertainty broadens the likelihood (as a function of x),
and therefore we expect that as it increases, the posterior estimate E(x | r)
will move toward the prior mean (in our case, zero). Intuitively, this is
because as the Bayesian decoder’s knowledge of the encoding mechanism
(represented by the parameters θ ) decreases, it discounts the information
that the observed spike train, r , carries about the stimulus and instead relies
more strongly on its prior information. To verify this intuition analytically,
we consider the case where E(x | r, θ ) ≈ xMAP (r, θ ) (e.g., as we saw in the
previous section, the Laplace approximation for the posterior stimulus dis-
tribution is often quite adequate in the case of gaussian priors, and this
approximation therefore holds in that case). Assuming this, we can replace
E(x | r, θ ) with xMAP (r, θ ) in equation 6.1, and obtain

E(x | r) ≈
∫

xMAP (r, θ )p(θ ) dθ. (6.2)

In the following, we drop r from the arguments of xMAP when it is under-
stood. We denote the average over p(θ ) in equation 6.2 by 〈xMAP〉θ

.
Using Bayes’s rule in the form log p(x | r) = log p(x) + log p(r | x) +

const., with equation 2.10, and equations 2.3 and 2.4 with exponential non-
linearity, we obtain

− log p(x | r, θ ) = 1
2

x
TC−1x +

∑
i

[−rT
i · (Ki · x + bi + Hi j · r j

)

+
∫

e Ki ·x+bi +
∑

j Hi j ·r j dt
]

, (6.3)
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up to an additive constant. Here, C is the covariance of the gaussian prior,
equation 2.10, and θ = {bi , Ki ,Hi j } are the GLM parameters introduced in
section 2. The MAP satisfies

∂ log p(xMAP | r)
∂x

= 0, (6.4)

which yields the equation

C−1xMAP (θ ) =
∑

i

K
T

i · [r i − e Ki ·xMAP (θ )+bi +
∑

j Hi j ·r j
]
. (6.5)

When the contrast or the stimulus filter is small (corresponding to the
regime of low signal-to-noise ratio), the exponential can be expanded to
first order in xMAP (θ ), yielding the linear equation (a similar expansion also
appeared in Pillow et al., 2011, the companion article),

A(θ )xMAP (θ ) = B(θ ), (6.6)

where we defined

A(θ ) ≡ C−1 +
∑

i

K
T

i Si Ki , (6.7)

B(θ ) =
∑

i

K
T

i · (r i − Si ) , (6.8)

and

Si ≡ ebi +
∑

j Hi j r j , (6.9)

Si (t1, t2) ≡ Si (t1)δ(t1 − t2). (6.10)

Notice that A(θ ) is the Hessian of the negative log posterior, equation 6.3,
at x = 0. Assuming the matrix A(θ ) is invertible,16 we then obtain

xMAP (θ ) = A(θ )−1B(θ ). (6.11)

We write θ = θML + δθ , where δθ has zero mean, and expand equation 6.11
in δθ up to second order to obtain

xMAP (θ ) = x(0)
MAP

+ x(1)
MAP

+ x(2)
MAP

+ O(δθ3), (6.12)

16This is true when C is well-defined.
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where

x(0)
MAP

= A−1
0 B0, (6.13)

and

x(1)
MAP

=A−1
0 dB − A−1

0 dA · x(0)
MAP

, (6.14)

x(2)
MAP

=A−1
0

[
d2B − dAA−1

0 dB − (
d2A − dAA−1

0 dA
)

x(0)
MAP

]
, (6.15)

such that x(n)
MAP

is homogeneously of order n in δθ . Here, we defined A0 ≡
A(θML), B0 ≡ B(θML), and dA and dB (d2A and d2B) are the random first-
(second-) order variations of A(θ ) and B(θ ) in δθ . The first-order variations,
dA and dB, are thus gaussian with zero mean and a covariance determined
by the covariance of θ . After averaging over θ , x(1)

MAP
will vanish, and we

have

〈xMAP〉θ
= x(0)

MAP
+ 〈x(2)

MAP
〉

θ
. (6.16)

To gain some intuition, we now set out to evaluate x(2)
MAP

in the regime
of small baseline firing rates, so that S0

i ≡ Si (θML) are small, and we also
assume we can neglect the uncertainty of the baseline firing rates and the
postspike feedback filters (i.e., we set δbi = δHi j = 0). In this case, d2B = 0,
and ignoring terms beyond the leading order in S0

i , we take A−1
0 ≈ C, and

obtain

x(2)
MAP

≈−A−1
0

(
dAA−1

0 dB + d2AA−1
0 B0

)
, (6.17)

≈−C
∑

i j

[
K

T

i S i
0δKiCδK

T

j + δK
T

i S0
i K iCδK

T

j + δK
T

i S0
i δKiCK

T

j

]

·(r j − S0
j

)

=−C2
∑

i j

[
K

T

i S0
i δKiδK

T

j + δK
T

i S0
i K iδK

T

j + δK
T

i S0
i δKi K

T

j

]

·(r j − S0
j

)
. (6.18)

Here, we denoted the maximum likelihood fit for the stimulus filters by K i ,
and in deriving the second line, we used dA = ∑

i δK
T

i S0
i K i + K

T

i S0
i δKi ,

d2A = ∑
i δK

T

i S0
i δKi , and dB = ∑

j δK j (r j − S0
j ), and in the last line we

assumed the stimulus is white, that is, C ∝ 1. Equation 6.18 is not very
enlightening, so we look at the special case where δKi = αK i , and α is a
noisy gaussian scalar with zero mean (this arises, for example, in the case
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of delta function kernels, as in the example of the last section—or more
generally when only the overall scale of Ki is uncertain). Replacing for δKi

and using equation 6.13 with A−1
0 ≈ C = c21 to write c2 ∑

j K
T

j (r j − S0
j ) =

x(0)
MAP

, for this case we obtain

〈
x(2)

MAP

〉
θ
≈ −3〈α2〉

θ
c2
∑

i

K
T

i S0
i K i x(0)

MAP
. (6.19)

Therefore, to the first nonvanishing order, the change in the L2 norm of the
estimate is

‖E(x | r)‖2
2 − ‖E(x | r, θML)‖2

2 ≈ ‖〈xMAP〉θ
‖2

2 − ∥∥x(0)
MAP

∥∥2
2

≈ 2x(0)T

MAP
· 〈x(2)

MAP

〉
θ
= −6〈α2〉

θ
c2x(0)T

MAP
Lx(0)

MAP
≤ 0, (6.20)

where the inequality followed from the fact that S0
i , and therefore L ≡∑

i K
T

i S0
i K i are positive definite operators. Thus, we see that, at least in

the special regime that we considered, parameter uncertainty will shrink
the norm of the posterior mean estimate, sending it toward the prior mean
at the origin. This result is in agreement with the intuition stated above
and was corroborated by our numerical results in more general parameter
regimes.

Figure 11 shows a numerical plot of the norm of the posterior estimate as a
function of the size of the uncertainty in Ki . Here, δKi was not constrained to
be proportional to K i . However, again, as uncertainty in model parameters
increases, leading to broadening of the likelihood, the posterior mean moves
toward the prior mean.

7 Discussion

Markov chain Monte Carlo allows the calculation of general, fully Bayesian
posterior estimates. The main goal of this article was to survey the per-
formance of a number of efficient MCMC algorithms in the context of
model-based neural decoding of spike trains. Using these methods, we also
verified and extended the results of Pillow et al. (2011) in the companion
article on MAP-based decoding and information estimation, via Laplace ap-
proximation, in GLM-based neural decoding problems. Although MCMC
integration is more general in this sense, it is at the same time significantly
more computationally expensive than the optimization algorithms used to
find the MAP. As we explained in section 2, the MAP is in general a good es-
timator when the Laplace approximation is accurate. The MAP also comes
with natural error bars estimated through the Hessian matrix of the log
posterior at MAP, equation 2.9. Furthermore, when it is valid, this approxi-
mation provides a very efficient way of estimating the mutual information
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Figure 11: Effect of parameter uncertainty on the posterior estimate for gaussian
white noise stimuli. (a) A plot of ‖〈xMAP 〉θ

‖2/
√

d (where d = 50 is the stimulus
dimension) versus relative uncertainty, α, in the stimulus filter ki (t). α is defined
through ki (t) = (1 + αε(t))kML

i (t), where ε(t) is a standard gaussian white noise.
Unlike in section 4, kML

i (t) (the maximum likelihood fit for ki (t)) was taken
to have a time width spreading over a few stimulus frames. Furthermore, its
magnitude was taken to be large enough to give rise to a sharp posterior,
satisfying equation 2.8 and, thus, E(x | r, θ ) ≈ xMAP (r, θ ). For each value of α,
100 samples of ε(t) were generated, and the MAP was decoded for each using
the corresponding ki (t) and the fixed spike train. The sample average of those
MAPs was taken as the estimate for 〈xMAP 〉θ

≈ E(x | r). (b) 〈xMAP 〉θ
(solid trace)

for α = 0 (top plot) and α = 1 (bottom plot) and the true stimulus (dotted trace).
The main effect of the finite uncertainty is a shrinkage of the estimate toward
zero (which is the mean of the prior gaussian distribution).

through equation 5.3. Thus, it is important to have a clear knowledge of
when this approximation holds, since when it does, it can be exploited to
dramatically reduce the computational cost of stimulus decoding or infor-
mation estimation.

In section 3, we introduced the RWM, HMC, Gibbs, and hit-and-run
Markov chains, all special cases of the Metropolis-Hastings algorithm. Al-
though these methods allow sampling from general posterior distributions,
regardless of the forward model, we also took advantage of the specific
properties of the distributions involved in our GLM-based decoding to in-
crease the efficiency of these chains. The ARS algorithm, which exploits
the log-concavity property of the GLM likelihood and the prior distribu-
tion, was used to significantly reduce the computational cost of the one-
dimensional sampling in each hit-and-run step. We took advantage of the
Laplace approximation (or a regularized version of it in the flat prior case) to
shape the proposal distributions to roughly match the covariance structure
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of the underlying distribution. Furthermore, we were able to carry this out
in O(T) computational time (i.e., scaling only linearly with the stimulus du-
ration, T) by exploiting the bandedness of the log-posterior Hessian in these
settings. To the best of our knowledge, the use of O(T), Laplace-enhanced
HMC in neural applications is novel. Similarly, athough the hit-and-run
algorithm is well known in the statistics literature, we are unaware of
any previous application of it in the context of high-dimensional neural
decoding.

We mention that these chains with O(T), Laplace-based enhancement
can also be implemented in decoding posterior distributions based on state-
space models with Markovian structure; an example of such an application
was presented in Figure 9, based on the state-space model used in Smith
et al. (2007). However, in cases where the log-posterior turns out to be
nonconcave, obtaining the Laplace approximation may be infeasible, or it
may not improve the chain’s mixing. Although MCMC without this en-
hancement is still applicable in such cases, other methods, such as sequen-
tial Monte Carlo (“particle-filtering”) (Doucet, de Freitas, & Gordon, 2001;
Brockwell et al., 2004; Kelly & Lee, 2004; Godsill, Doucet, & West, 2004;
Shoham et al., 2005; Ergun et al., 2007; Vogelstein et al., in press; Huys and
Paninski, 2009), are solely applicable in models with Markovian structure
may prove to be more efficient.

It is worth noting a connection between this O(T) nonisotropic MCMC
sampling and the Bayesian adaptive regression splines (BARS) method (Di-
Matteo, Genovese, & Kass, 2001; Wallstrom, Liebner, & Kass, 2007), which
has become a popular tool in neursocientific applications. The BARS al-
gorithm is a powerful nonparametric regression method designed to infer
the shape of a smooth, underlying curve that has produced noisy obser-
vations. This method assumes the curve can be approximated by a spline
and outputs samples from the posterior distribution of the spline knots and
coefficients. Specifically, in the case of neural spike trains, it is assumed
that the observed spikes, r (t), are produced by an inhomogeneous Poisson
process with a rate λ(t) = exp (B(t)Tβ), where Bi (t) is a cubic B-spline basis
and βi are the spline coefficients. Here, i runs from 1 to k + 2, where k is the
number of spline knots with positions τi ; the spline basis functions, Bi (t),
implicitly depend on k and τi . Conditioned on fixed τi and k, the prior dis-
tribution of the spline coefficients β is taken to be gaussian with zero mean
and inverse covariance C−1

i j ∝ ∑
t Bi (t)B j (t) (a unit information prior). Thus

conditioned on fixed spline knots, the BARS model involves Poisson ob-
servations from a gaussian latent variable β; this is directly analogous to
our GLM model with gaussian stimuli, x, with β and B(t) replacing x and
K in the analogy, respectively. In particular, sampling from the posterior
distribution of the a priori gaussian β (given τi and k) is very similar to
sampling from the posterior over the gaussian stimulus, x, in our examples
in this article. Furthermore, to obtain conditional samples of β, the BARS
code uses an RWM chain (Wallstrom et al., 2007), which, as in equations 3.8
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and 3.9, employs the Hessian at the MAP point for the spline coefficients
to produce nonisotropic proposals. When the form of the prior covariance,
mentioned above, and the standard likelihood expression for a Poisson pro-
cess are used, the Hessian of the negative log posterior for β (given r (t), τi

and k) is given by

Hi j = a
∑

t

Bi (t)B j (t) +
∑

t

Bi (t)λ(t)B j (t), (7.21)

where the first term is the inverse prior covariance and a is some positive
constant. Since, by definition, Bi (t) is nonzero only when t ∈ [τi , τi+4], we
see that Hi j vanishes when |i − j | > 3, and hence, is banded. Again, the
bandedness of the Hessian is exploited (Wallstrom et al., 2007) to obtain
the RWM proposals in O(T) computational time by the method described
after equation 3.10. We note that the BARS package could potentially be im-
proved by using a faster-mixing chain such as HMC, which can outperform
RWM by orders of magnitude (see Figure 4).

We compared the mixing rates of the mentioned MCMC chains, in sam-
pling from the posterior stimulus distributions for GLM-modeled neurons.
In this setting, when the posterior is smooth throughout its support, the
HMC algorithm outperforms the other chains by an order of magnitude.
On the other hand, when sampling is from posteriors based on flat priors
with sharp corners, the hit-and-run chain mixed consistently faster than the
others.

In section 4, we compared the performance of the MAP and the posterior
mean, calculated using MCMC, in different settings. In one example, we
decoded simulated spike trains (generated in response to gaussian and flat
white noise stimuli) in a range of stimulus input strengths and for different
numbers of identical cells. We also decoded the filtered stimulus input
into six retinal ganglion cells, based on their experimentally recorded spike
trains. The average squared error of the MAP and mean estimates were in
general quite close in the case of gaussian stimuli, justifying MAP decoding
in this case. In the flat prior case, however, the posterior mean can often
have a much smaller average squared error than the MAP.

In section 5, we applied MCMC to the problem of estimating proper-
ties of the joint distribution p(x | r) that cannot be obtained from its low-
dimensional marginals. In particular, we investigated the reliability of the
Laplace approximation for the mutual information between the stimulus
and spike trains (model-based calculations of the mutual information with
gaussian priors have been previously presented in Barbieri et al., 2004).
We found that the Laplace approximation for the mutual information was
adequate in the case of gaussian priors, except in a small range of moderate
stimulus input strengths.

In the previous section we dealt with the effect of uncertainty in GLM
parameters (e.g., based on fits to experimental data) on the decoding.
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Intuitively, it is expected that when the forward model parameters be-
come uncertain, information coming from the spike train, and hence the
likelihood, becomes less reliable, and therefore the estimate will rely more
heavily on the prior information. Thus, the posterior mean is expected to
revert toward the prior mean as parameter uncertainty increases. We veri-
fied this intuition analytically in the special case of localized stimulus filters
(with no bandpass filtering) and small baseline firing rates. Our numerics
showed that the main systematic effect of increasing parameter uncertainty
on the mean estimate, E(x | r), is to shrink its magnitude (thus sending to
the origin, the prior mean in our case) in a wide range of parameter values.

The methods developed in this article and in Pillow et al. (2011), the
companion article, can be used for a variety of applications. In future work
we plan to further apply these techniques to other experimental data and
to compare different “codebooks” (as mentioned in section 1) based on
different reductions of the full spike trains according to their robustness
and fidelity.
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