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Recent work has examined the estimation of models of stimulus-driven neural
activity in which a linear filtering process is followed by a nonlinear, probabilistic
spiking stage. We analyze the estimation of one such model for which this
nonlinear step is implemented by a noisy, leaky, integrate-and-fire mechanism
with a spike-dependent after-current. We have formulated this problem in terms
of maximum likelihood estimation: a full discussion of the problem is contained
in [1, 3]). Here we present detailed numerical methods related to computing the
likelihood function using the Fokker-Planck equation, excerpted from [2]. This
model was first applied to neuronal data in [4].

1 Defining the model and likelihood function

We consider a model for which the (dimensionless) subthreshold voltage variable V evolves
according to

dV =

(

− gV (t) + ~k · ~x(t) +
i−1
∑

j=0

h(t − tj)

)

dt + σNt, (1)

and resets to Vr whenever V = 1. Here, g denotes the leak conductance, ~k ·~x(t) the projection

of the input signal ~x(t) onto the linear kernel ~k, h is an “afterpotential,” a current waveform
of fixed amplitude and shape whose value depends only on the time since the last spike ti−1,
and Nt is an unobserved (hidden) noise process with scale parameter σ. Without loss of
generality, the “leak” and “threshold” potential are set at 0 and 1, respectively, so the cell
spikes whenever V = 1, and V decays back to 0 with time constant 1/g in the absence of
input. The dynamical properties of this type of “spike response model” have been extensively
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studied [5]; for example, it is known that this class of models can effectively capture much
of the behavior of apparently more biophysically realistic models (e.g. Hodgkin-Huxley).

Our problem now is to estimate the model parameters {~k, σ, g, Vr, h} from a sufficiently rich,
dynamic input sequence ~x(t) together with spike times {ti}. A natural choice is the maximum
likelihood estimator (MLE), which is easily proven to be consistent and statistically efficient
here. To compute the MLE, we need to compute the likelihood and develop an algorithm
for maximizing it.

In the noiseless case [6], the voltage trace during an interspike interval t ∈ [ti−1, ti] is given
by the solution to equation (1) with σ = 0:

V0(t) = Vre
−gt +

∫ t

ti−1

(

~k · ~x(s) +
i−1
∑

j=0

h(s − tj)

)

e−g(t−s)ds, (2)

which is simply a linear convolution of the input current with a negative exponential. It
is easy to see that adding Gaussian noise to the voltage during each time step induces a
Gaussian density over V (t), since linear dynamics preserve Gaussianity [7]. This density is
uniquely characterized by its first two moments; the mean is given by (2), and its covariance is
σ2EgE

T
g , where Eg is the convolution operator corresponding to e−gt. Note that this density

is highly correlated for nearby points in time, since noise is integrated by the linear dynamics.
Intuitively, smaller leak conductance g leads to stronger correlation in V (t) at nearby time

points. We denote this Gaussian density G(~xi, ~k, σ, g, Vr, h), where index i indicates the ith
spike and the corresponding stimulus chunk ~xi (i.e. the stimuli that influence V (t) during
the ith interspike interval).

Now, on any interspike interval t ∈ [ti−1, ti], the only information we have is that V (t) is less
than threshold for all times before ti, and exceeds threshold during the time bin containing
ti. This translates to a set of linear constraints on V (t), expressed in terms of the set

Ci =
⋂

ti−1≤t<ti

{

V (t) < 1

}

∩
{

V (ti) ≥ 1
}

.

Therefore, the likelihood that the neuron first spikes at time ti, given a spike at time ti−1, is
the probability of the event V (t) ∈ Ci, which is given by

L~xi,ti(
~k, σ, g, Vr, h) =

∫

Ci

G(~xi, ~k, σ, g, Vr, h),

the integral of the Gaussian density G(~xi, ~k, σ, g, Vr, h) over the set Ci.

Spiking resets V to Vr, meaning that the noise contribution to V in different interspike
intervals is independent. This “renewal” property, in turn, implies that the density over
V (t) for an entire experiment factorizes into a product of conditionally independent terms,
where each of these terms is one of the Gaussian integrals derived above for a single interspike
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interval. The likelihood for the entire spike train is therefore the product of these terms over
all observed spikes. Putting all the pieces together, then, the full likelihood is

L{~xi,ti}(
~k, σ, g, Vr, h) =

∏

i

∫

Ci

G(~xi, ~k, σ, g, Vr, h), (3)

where the product, again, is over all observed spike times {ti} and corresponding stimulus
chunks {~xi}.

Now how do we actually compute the likelihood? This is a nontrivial problem: we need to
be able to quickly compute integrals of multivariate Gaussian densities G over simple but
high-dimensional orthants Ci. The technique we employ can be termed “density evolution”
[8, 9]. The method is based on the following well-known fact from the theory of stochastic
differential equations [7]: given the data (~xi, ti−1), the probability density of the voltage
process V (t) up to the next spike ti satisfies the following partial differential (Fokker-Planck)
equation:

∂P (V, t)

∂t
=

σ2

2

∂2P

∂V 2
+ g

∂[(V − Veq(t))P ]

∂V
, (4)

under the boundary conditions

P (V, ti−1) = δ(V − Vr),

P (Vth, t) = 0; (5)

where Veq(t) is the instantaneous equilibrium potential:

Veq(t) =
1

g

(

~k · ~x(t) +
i−1
∑

j=0

h(t − tj)

)

. (6)

Moreover, the conditional firing rate f(t) satisfies

∫ t

ti−1

f(s)ds = 1 −

∫

P (V, t)dV. (7)

Thus standard techniques for solving the drift-diffusion evolution equation (4) lead to a fast

method for computing f(t). Finally, the likelihood L~xi,ti(
~k, σ, g, Vr, h) is simply f(ti).

2 Numerical Methods for Fokker-Planck Equation

In order to compute the likelihood function L{~xi,ti}(
~k, σ, g, Vr, h), we used a second-order nu-

merical method for solving the Fokker-Planck (FP) equation (eq. 4). This equation describes
the time evolution of P (V, t), the probability density over sub-threshold voltage V at time
t, as a function of the input and model parameters.
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Our general approach involves discretizing V so that we can represent P (V, t∗) at a fixed time
t∗ by a set of discrete values. We then propagate this density forward in time using the FP
equation to obtain P (V, t∗ + ∆t), the probability over V at the next time step. Intuitively,
the likelihood of a spike occurring during the interval [t∗, t∗ + ∆t] is given by the amount
of probability mass which leaks over the (absorbing) boundary at threshold (V = 1) during
this time step.

We now describe the density propagation algorithm in detail. Let {vi}
n
i=1 denote the dis-

cretization over V , consisting of n evenly spaced bins with a separation of ∆v. We let vn = 1
(threshold) and set v1 to some voltage sufficiently low that we can represent P (V ) accurately
at all time points. We will use i to index voltage and j to index time, so pj

i denotes the
probability mass associated with the ith bin of the voltage discretization and time bin j.
And, in a slight abuse of notation, we will use pj to refer to the entire density over voltage
at the jth time step.

We initialize the algorithm with a density p1, computed a short time after the most recent
spike, when the subthreshold probability density over V is still well-approximated by a
Gaussian. This initial density is given by

p1
i = N(V0(t1),

1
2g

(1 − e−2gt1)σ2), (8)

the standard Gaussian density with mean V0(t1) and variance 1
2g

(1 − e−2gτ )σ2, defined on

the grid points vi. Note that V0(t1) is the noiseless voltage at time t1 since the most recent
spike (eq. 2).

Recall that the FP equation (eq. 4) for the model is given by

∂P (V, t)

∂t
=

σ2

2

∂2P

∂V 2
+ g

∂[(V − Veq(t))P ]

∂V
,

=
σ2

2

∂2P

∂V 2
+ g(V − Veq(t))

∂P

∂V
+ gP, (9)

where Veq(t) is the instantaneous reversal potential at time t (eq 6). We solve this equation
using a scheme related to the Crank-Nicolson method for solving diffusive PDEs [10]1. This
involves substituting discrete approximations for the partial derivatives as follows:

pj+1
i − pj

i

∆t
=

σ2

2

[

(pj+1
i+1 − 2pj+1

i + pj+1
i−1 ) + (pj

i+1 − 2pj
i + pj

i−1)

2(∆v)2

]

+ g(vi − Veq(t))

[

(pj+1
i+1 − pj+1

i−1 ) + (pj
i+1 − pj

i−1)

4(∆v)

]

+ g
pj+1

i + pj
i

2
. (10)

Note that the right-hand-side derivatives are evaluated by averaging over partial derivatives
at the jth and j + 1st time steps, leading to a method which is second-order accurate in V
and t.

1Note that the Crank-Nicolson method is unconditionally stable for purely diffusive PDEs, although not

so if a drift term is included. Instabilities may therefore arise if ∆t is too large relative to ∆v.
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For the sake of clarity, we can rewrite (10) as a sparse matrix equation, which can be solved
efficiently in o(n) operations. We have:

1
∆t

(pj+1 − pj) = σ2

4(∆v)2
D

′′

(

pj+1 + pj
)

+ g

4(∆v)
D′(V − Veq(t))

(

pj+1 + pj
)

, (11)

where D′ and D′′ are tri-diagonal matrices corresponding to derivative and second-derivative
operators (with the values [ −1 0 1 ] and [ 1 −2 1 ] along the main diagonals, respec-
tively), V is a diagonal matrix with the grid points {vi} along the diagonal, and Veq(tj) is a
scalar that depends on the input during the current time step. By collecting like terms, this
equation can be simplified to

(

A1 − BVeq(tj)
)

pj+1 =
(

A2 + BVeq(tj)
)

pj, (12)

where A1, A2 and B are tri-diagonal matrices that can be computed in advance:

A1 = I − σ2∆t
4(∆v)2

D
′′

− g∆t

4(∆v)
D′V

A2 = I + σ2∆t
4(∆v)2

D
′′

+ g∆t

4(∆v)
D′V

B = g∆t

4(∆v)
D′, (13)

where I is the n × n identity matrix. We used a special routine written in C to solve this
equation for pj+1 on each time step, which effects the density propagation.

Of course, we must also specify the correct boundary conditions (eq. 5) to ensure that
probability mass leaks only one way across the spike threshold, which we use to compute
p(spike) during each time step. We enforce the upper (absorbing) boundary condition by
replacing the nth columns of the D′ and D′′ matrices with the nth column of the identity
matrix (i.e. zero except for 1 in the nth position), which conserves probability mass in the
last bin and prevents drift or diffusion from pn to pn−1. We enforce the lower (reflecting)
boundary condition by adding to the first entry of D′ and D′′ so that first column sums to
1, which ensures that probability mass is conserved at the lower boundary (i.e. it doesn’t
leak out of the range of {vi}).

After having initialized the density at p1, we perform density propagation (computing Veq(t)
at each time step and solving equation 12) until we reach the next spike time tk. Here, pk

n

gives the cumulative probability of a spike having occurred by time tk, and the likelihood of

a spike occurring at tk is pk
n−pk−1

n

∆t
.

3 The Gaussian process V (t)

Here we derive discrete and continuous solutions for the mean and variance of V (t), the
membrane potential of the IF model, in the absence of spiking. V (t) is a Gaussian (Ornstein-
Uhlenbeck) process, and therefore completely characterized by its mean and variance.
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Mean

The mean, µ(t), of the Gaussian (governing the evolution of P (V ), the density over membrane
potential) is equal to the solution of the noiseless version of the integrate-and-fire dynamics,
on the interval [0, ti]:

dV

dt
= −gV (t) + ~k · ~x(t), (14)

with initial data
V (0) = Vr.

Thus,

µ(t) = Vre
−gt +

∫ t

0

(

~k · ~x(s)
)

e−gsds.

To simplify notation, we can rewrite µ(t) in operator form:

µ(t) = Eg

[

Vrδ(0) + k · ~x(t)
]

, (15)

where Eg is the convolution operator corresponding to e−gt.

If we consider the problem discretized in time bins of width ∆t and set α = e−g∆t, the
operator Eg can be written as a matrix:

Eg =















1
α 1
α2 α 1
...

. . .

αn . . . α2 α 1















. (16)

The first row corresponds to the filtering during the first time bin and the nth row corresponds
to filtering for the nth time bin, or t = n(∆t) of the solution. Analytically, for continuous
time, we can express the mean as:

µ(t) = 1
g
(1 − e−gt)I,

if I is a (constant) injected current.

Covariance

The covariance matrix Λ for V (t) is given by the outer product of Eg with itself (this is true
for any linear operator applied to a Gaussian random variable): Λ = EgE

T
g . Written as a

matrix, this gives:

Λ =















1 α α2 . . . αn

α 1 + α2 α(1 + α2) . . . αn−1(1 + α2)
α2 α(1 + α2) 1 + α2 + α4

...
...

. . .

αn αn−1(1 + α2) 1 + . . . + α2n















. (17)
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The nth term along the diagonal is

Λ(n, n) =
n
∑

j=0

αj =
1 − α2n

1 − α2

and off-diagonal terms Λ(i, j) = Λ(i, i)αj−i, for i < j. We can also express Λ analytically in
continuous time. Diagonal terms are given by:

Λ(t, t) =

∫ t

0

e−2gsds = 1
2g

(1 − e−2gt)

and off-diagonal terms by Λ(t, t′) = e−g(t′−t)Λ(t, t), for t < t′.
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